cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083648 Decimal expansion of Sum_{n>=1} -(-1)^n/n^n = Integral_{x=0..1} x^x dx.

Original entry on oeis.org

7, 8, 3, 4, 3, 0, 5, 1, 0, 7, 1, 2, 1, 3, 4, 4, 0, 7, 0, 5, 9, 2, 6, 4, 3, 8, 6, 5, 2, 6, 9, 7, 5, 4, 6, 9, 4, 0, 7, 6, 8, 1, 9, 9, 0, 1, 4, 6, 9, 3, 0, 9, 5, 8, 2, 5, 5, 4, 1, 7, 8, 2, 2, 7, 0, 1, 6, 0, 0, 1, 8, 4, 5, 8, 9, 1, 4, 0, 4, 4, 5, 6, 2, 4, 8, 6, 4, 2, 0, 4, 9, 7, 2, 2, 6, 8, 9, 3, 8, 9, 7, 4, 8, 0, 0
Offset: 0

Views

Author

Eric W. Weisstein, May 01 2003

Keywords

Comments

In 1697, Johann Bernoulli explores this curve and finds its minimum and the area under the curve from 0 to 1, all this without the benefit of the exponential function.

Examples

			0.78343051071213440705926438652697546940768199014693095825541782270...
		

References

  • William Dunham, The Calculus Gallery, Masterpieces from Newton to Lebesgue, Princeton University Press, Princeton, NJ 2005, pp. 46-51.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.11, p. 449.
  • Paul J. Nahin, An Imaginary Tale: The Story of sqrt(-1), Princeton, New Jersey: Princeton University Press (1988), p. 146.

Crossrefs

Cf. A137420 (continued fraction expansion).
Cf. A073009. The minimum point on the curve x^x is (A068985, A072364).

Programs

  • Mathematica
    RealDigits[ Sum[ -(-1)^n /n^n, {n, 1, 60}], 10, 111] [[1]] (* Robert G. Wilson v, Jan 31 2005 *)
  • PARI
    -sumalt(n=1, (-1/n)^(n)) \\ Michel Marcus, Oct 15 2015
    
  • Sage
    numerical_approx(-sum((-1/n)^n for n in (1..120)), digits=130) # G. C. Greubel, Mar 01 2019

Formula

Constant also equals the double integral Integral_{y = 0..1} Integral_{x = 0..1} (x*y)^(x*y) dx dy. - Peter Bala, Mar 04 2012
From Petros Hadjicostas, Jun 29 2020: (Start)
Equals -Integral_{x=0..1, y=0..1} (x*y)^(x*y)/log(x*y) dx dy. (Apply Theorem 1 or Theorem 2 of Glasser (2019) to Integral_{x=0..1} x^x dx.)
Equals -Integral_{x=0..1} x^x*log(x) dx. (Apply Theorem 1 or Theorem 2 of Glasser (2019) to the double integral of Peter Bala above.)
Without using the results in Glasser (2019), notice that Integral x^x*(1 + log(x)) dx = x^x + c, which implies Integral_{x=0..1} x^x dx = -Integral_{x=0..1} x^x*log(x) dx. (End)