A083705 a(n) = 2*a(n-1) - 1 with a(0) = 10.
10, 19, 37, 73, 145, 289, 577, 1153, 2305, 4609, 9217, 18433, 36865, 73729, 147457, 294913, 589825, 1179649, 2359297, 4718593, 9437185, 18874369, 37748737, 75497473, 150994945, 301989889, 603979777, 1207959553, 2415919105, 4831838209, 9663676417, 19327352833
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Programs
-
Magma
[9*2^n+1 : n in [0..30]]; // Vincenzo Librandi, Nov 03 2011
-
Mathematica
s=10;lst={s};Do[s=s+(s-1);AppendTo[lst,s],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 30 2009 *) NestList[2#-1&,10,40] (* Harvey P. Dale, Mar 13 2011 *)
-
Python
from itertools import accumulate def f(an, _): return 2*an - 1 print(list(accumulate([10]*32, f))) # Michael S. Branicky, Oct 19 2021
Formula
From R. J. Mathar, Aug 01 2009: (Start)
a(n) = 1 + 9*2^n = 3*a(n-1) - 2*a(n-2).
G.f.: -(-10+11*x)/((2*x-1)*(x-1)). (End)
E.g.f.: exp(x)*(1 + 9*exp(x)). - Stefano Spezia, Oct 08 2022
Comments