A083713 a(n) = (8^n - 1)*3/7.
0, 3, 27, 219, 1755, 14043, 112347, 898779, 7190235, 57521883, 460175067, 3681400539, 29451204315, 235609634523, 1884877076187, 15079016609499, 120632132875995, 965057063007963, 7720456504063707, 61763652032509659
Offset: 0
Examples
From _Zerinvary Lajos_, Jan 14 2007: (Start) Octal..........decimal: 0....................0 3....................3 33..................27 333................219 3333..............1755 33333............14043 333333..........112347 3333333.........898779 33333333.......7190235 333333333.....57521883 3333333333...460175067 etc. (End)
Links
- Index entries for linear recurrences with constant coefficients, signature (9,-8).
Programs
-
Mathematica
(3/7)(8^Range[0,20]-1) (* or *) LinearRecurrence[{9,-8},{0,3},30] (* or *) NestList[8#+3&,0,30] (* Harvey P. Dale, Jun 06 2013 *)
-
PARI
a(n)=(8^n-1)*3/7 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 3*A023001(n).
Recursion: a(0) = 0, a(n+1) = (((a(n)*2)*2+1)*2+1).
a(n) = 8*a(n-1) + 3 (with a(0)=0). - Vincenzo Librandi, Aug 08 2010
a(0)=0, a(1)=3, a(n) = 9*a(n-1) - 8*a(n-2). - Harvey P. Dale, Jun 06 2013
From Stefano Spezia, Feb 23 2025: (Start)
G.f.: 3*x/((1 - x)*(1 - 8*x)).
E.g.f.: 3*exp(x)*(exp(7*x) - 1)/7. (End)
Comments