cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A115670 Semiprimes (A001358) whose digit reversal is prime.

Original entry on oeis.org

14, 34, 35, 38, 74, 91, 95, 106, 118, 119, 133, 134, 142, 145, 146, 166, 194, 301, 305, 334, 346, 358, 361, 362, 365, 371, 377, 382, 386, 391, 395, 703, 706, 713, 721, 731, 745, 746, 749, 755, 758, 763, 778, 779, 785, 791, 793, 799, 901, 905, 914, 917, 922
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			35=5*7 is semiprime and 53 is prime.
		

Crossrefs

A260704 Number of pairs of distinct divisors of A260703(n) having the property that the reversal of one is equal to the other.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 4, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 4, 1, 1, 2, 2, 3, 1, 1, 1, 2, 2, 1, 4, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 3
Offset: 1

Views

Author

Michel Lagneau, Nov 17 2015

Keywords

Comments

A260703: numbers having at least two divisors such that the reversal of one is equal to the other.

Examples

			a(9)=3 because A260703(9) = 336 and the set of the divisors of 336, {1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 42, 48, 56, 84, 112, 168, 336} contains 3 pairs (12, 21), (24, 42) and (48, 84) with the property: 21 = reversal(12), 42 = reversal(24) and 84 = reversal(48).
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=5000:
    for n from 1 to nn do:
    it:=0:d:=divisors(n):d0:=nops(d):
      for i from 1 to d0 do:
       dd:=d[i]:y:=convert(dd,base,10):n1:=length(dd):
       s:=sum('y[j]*10^(n1-j)', 'j'=1..n1):
        for k from i+1 to d0 do:
         if s=d[k]
         then
         it:=it+1:
         else fi:
        od:
        od:
        if it>0
        then
        printf(`%d, `,it):
        else fi:
    od:
  • Mathematica
    f[n_] := Block[{d = Select[Divisors@n, IntegerLength@# > 1 &], palQ, r}, palQ[x_] := Reverse@ # == # &@ IntegerDigits@ x; r = FromDigits@ Reverse@ IntegerDigits@ # & /@ d; Length@ Select[Intersection[d, r], ! palQ@ # &]/2]; f /@ Range@ 3000 /. 0 -> Nothing (* Michael De Vlieger, Nov 17 2015 *)

A260705 Least integer k such that the set of the divisors of k contains exactly n pairs of numbers having the following property: for each pair of two distinct divisors, the reversal of one is equal to the other.

Original entry on oeis.org

84, 168, 336, 1008, 3024, 5544, 11088, 16632, 33264, 49896, 99792, 182952, 365904, 249480, 498960, 1097712, 2162160, 3359664, 1846152, 3027024, 5538456, 6054048, 9081072, 9230760, 14270256, 19891872, 20307672, 25197480, 33297264, 45405360, 55135080, 71351280
Offset: 1

Views

Author

Michel Lagneau, Nov 17 2015

Keywords

Comments

It seems that a(n)==0 (mod 84).
Additional terms with n > 75: a(77) = 15455984544, a(80) = 27719972280, a(83) = 22439977560, a(84) = 18479981520, a(86) = 28559971440. - Lars Blomberg, Jan 04 2016

Examples

			a(4)=1008 because the set of the divisors {1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 28, 36, 42, 48, 56, 63, 72, 84, 112, 126, 144, 168, 252, 336, 504, 1008} contains 4 pairs (12, 21), (24, 42), (36, 63) and (48, 84) with the property 21 = reversal(12), 42 = reversal(24), 63 = reversal(36) and 84 = reversal(48).
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=10^8:
    for n from 1 to 16 do:
    ii:=0:
    for m from 1 to nn while(ii=0) do:
    it:=0:d:=divisors(m):d0:=nops(d):
      for i from 1 to d0 do:
       dd:=d[i]:y:=convert(dd,base,10):n1:=length(dd):
       s:=sum('y[j]*10^(n1-j)', 'j'=1..n1):
        for k from i+1 to d0 do:
         if s=d[k]
         then
         it:=it+1:
         else fi:
        od:
        od:
        if it=n
        then
        ii:=1:printf("%d %d \n",n,m):
        else fi:
    od:
    od:
  • PARI
    nbr(vd) = {nb = 0; for (j=1, #vd, da = vd[j]; rda = eval(concat(Vecrev(Str(da)))); rrda = eval(concat(Vecrev(Str(rda)))); if ((da != rda) && vecsearch(vd,rda) && (da == rrda), nb++);); nb/2;}
    a(n) = {k=1; while (nbrp(divisors(k)) != n, k++); k;} \\ Michel Marcus, Dec 27 2015

Extensions

a(14)-a(15) corrected by Lars Blomberg, Dec 27 2015
a(7), a(19), a(20) corrected and a(21)-a(32) added by Lars Blomberg, Jan 04 2016

A158126 Products of emirpimes pairs, sorted.

Original entry on oeis.org

765, 1612, 3627, 4606, 4930, 26962, 39483, 48763, 58765, 61306, 69723, 85405, 102910, 107485, 118809, 129682, 134458, 136467, 140572, 146047, 148930, 151209, 155038, 162409, 178555, 194242, 196315, 203098, 213310, 236421, 283798, 291247
Offset: 1

Views

Author

Jonathan Vos Post, Mar 13 2009

Keywords

Comments

This is to A083815 as A097393 is to A000040. A subsequence of A014613.

Examples

			a(1) = 15*51. a(2) = 26*62. a(3) = 39*93. a(4) is not 51*15 because that has already occurred as a(1). a(4) = 58*85.
		

Crossrefs

Formula

a(n) = n-th emirpimes not used so far * R(n-th emirpimes not used so far).
{a(n)} = {A097393(n)*A004086(A097393(n))}.

Extensions

4930 inserted by R. J. Mathar, Dec 06 2009

A260703 Numbers having at least two distinct divisors with the property that the reversal of one is equal to the other.

Original entry on oeis.org

84, 162, 168, 216, 252, 255, 270, 324, 336, 403, 420, 432, 486, 504, 510, 540, 574, 588, 648, 672, 736, 756, 765, 806, 810, 840, 864, 924, 972, 976, 1008, 1020, 1080, 1092, 1134, 1148, 1176, 1207, 1209, 1260, 1275, 1296, 1300, 1344, 1350, 1425, 1428, 1458
Offset: 1

Views

Author

Michel Lagneau, Nov 17 2015

Keywords

Comments

The corresponding numbers of pairs of divisors having this property are 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 3,... (see A260704).

Examples

			336 is in the sequence because the set of its divisors {1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 42, 48, 56, 84, 112, 168, 336} contains at least two distinct divisors with the property that the reversal of one is equal to the other. This set contains 3 pairs (12, 21), (24, 42) and (48, 84) with the property 21 = reversal(12), 42 = reversal(24) and 84 = reversal(48).
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=20000:
    for n from 1 to nn do:
    it:=0:d:=divisors(n):d0:=nops(d):
      for i from 1 to d0 do:
       dd:=d[i]:y:=convert(dd,base,10):n1:=length(dd):
       s:=sum('y[j]*10^(n1-j)', 'j'=1..n1):
        for k from i+1 to d0 do:
         if s=d[k]
         then
         it:=it+1:
         else fi:
        od:
        od:
        if it>0
        then
        printf(`%d, `,n):
        else fi:
    od:
  • Mathematica
    fQ[n_] := Block[{d = Select[Divisors@ n, IntegerLength@ # > 1 &], palQ, r}, palQ[x_] := Reverse@ # == # &@ IntegerDigits@ x; r = FromDigits@ Reverse@ IntegerDigits@ # & /@ d; Length@ Select[Intersection[d, r], ! palQ@ # &] >= 2]; Select[Range@ 1500, fQ] (* Michael De Vlieger, Nov 17 2015 *)

A376746 Semiprimes whose prime factors are the digit reversal of each other.

Original entry on oeis.org

4, 9, 25, 49, 121, 403, 1207, 2701, 7663, 10201, 17161, 22801, 32761, 35143, 36481, 75007, 97969, 117907, 124609, 127087, 139129, 140209, 146689, 173809, 197209, 247021, 257821, 342127, 382387, 528529, 573049, 619369, 635209, 643063, 692443, 743623, 844561, 863041
Offset: 1

Views

Author

Andrew Howroyd, Oct 03 2024

Keywords

Comments

The squares of all palindromic primes (A002385) are a subsequence and these are the only perfect squares.

Examples

			121 is a term because 121 = 11 * 11.
403 is a term because 403 = 13 * 31.
1207 is a term because 1207 = 17 * 71.
2701 is a term because 2701 = 37 * 73.
		

Crossrefs

A083815 is a subsequence.

Programs

  • PARI
    upto(lim)={my(L=List()); forprime(p=2, sqrtint(lim), my(q=fromdigits(Vecrev(digits(p)))); if(isprime(q) && p*q<=lim, listput(L,p*q))); Set(L)}

A159238 Primes which are digital reversals of products of "emirpimes" pairs.

Original entry on oeis.org

2161, 39841, 242491, 414553, 513691, 555871, 830551, 854431, 904261, 1663951, 1706473, 2060803, 3201643, 5543029, 6075379, 6497509, 6830797, 6846787, 7245937, 7558297, 9300043, 9339439, 12248779, 23175751, 23793631, 24769057
Offset: 1

Views

Author

Jonathan Vos Post, Apr 06 2009

Keywords

Examples

			a(1) = 2161 because this is prime, and R(A158126(2)) = R(1612) = 2161. a(2) = 39841 because this is prime, and R(A158126(20)) = R(148930) = 039841 which in OEIS form strips away leading zero to become 39841. a(7)is the prime 854431 = R(A158126(16)) = R(134458).
		

Crossrefs

Formula

{A004086(A158126(i)) such that A004086(A158126(i)) is an element of A000040}.

Extensions

Edited by N. J. A. Sloane, Apr 07 2009
414553 inserted by R. J. Mathar, Dec 06 2009
Showing 1-7 of 7 results.