cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083859 Main diagonal of generalized Fibonacci array A083856.

Original entry on oeis.org

0, 1, 1, 4, 9, 41, 133, 673, 2737, 15130, 72181, 430739, 2320825, 14815529, 88005541, 596681296, 3843559137, 27515587661, 189933449365, 1428716457761, 10474213334761, 82448447397646, 637534807917701, 5233087759204967, 42445677865505425, 362213650380301201
Offset: 0

Views

Author

Paul Barry, May 06 2003

Keywords

Comments

If a sequence (s(n): n >= 0) is of the form s(0) = 0, s(1) = x, and s(n) = s(n-1) + k*s(n-2) for n >= 2 (for some integer k >= 0 and some number x), then s(k) = a(k)*x. For example if k = 7 and x = 5, then (s(n): n = 0..7) = (0, 5, 5, 40, 75, 355, 880, 3365) and s(7) = 3365 = 673*5 = a(7)*x. - Gary Detlefs, Dec 04 2009 [Edited by Petros Hadjicostas, Dec 24 2019]

Crossrefs

Programs

  • GAP
    Concatenation([0], List([1..30], n-> Sum([0..Int((n-1)/2)], j-> Binomial(n-j-1, j)*n^j) )); # G. C. Greubel, Dec 27 2019
  • Magma
    [0] cat [ &+[Binomial(n-j-1, j)*n^j: j in [0..Floor((n-1)/2)]] : n in [1..30]]; // G. C. Greubel, Dec 27 2019
    
  • Maple
    seq( `if`(n=0, 0, simplify( (-sqrt(n)*I)^(n-1)*ChebyshevU(n-1, I/(2*sqrt(n)))) ), n=0..30); # G. C. Greubel, Dec 27 2019
    # second Maple program:
    a:= n-> (<<0|1>, >^n)[1, 2]:
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 19 2021
  • Mathematica
    Table[DifferenceRoot[Function[{y, m}, {y[2 + m] == y[1 + m] + n*y[m], y[0] == 0, y[1] == 1}]][n], {n, 0, 20}] (* Benedict W. J. Irwin, Nov 03 2016 *)
    Table[If[n==0, 0, Round[(Sqrt[n])^(n-1)*Fibonacci[n, 1/Sqrt[n]] ]], {n,0,30}] (* G. C. Greubel, Dec 27 2019 *)
  • PARI
    vector(31, n, if(n==1, 0, round((-sqrt(n-1)*I)^(n-2)*polchebyshev(n-2, 2, I/(2*sqrt(n-1)))) ) ) \\ G. C. Greubel, Dec 27 2019
    
  • Sage
    [0]+[(-sqrt(n)*I)^(n-1)*chebyshev_U(n-1, I/(2*sqrt(n))) for n in (1..30)] # G. C. Greubel, Dec 27 2019
    

Formula

a(n) = (((1 + sqrt(4*n + 1))/2)^n - ((1 - sqrt(4*n + 1))/2)^n)/sqrt(4*n + 1).
a(n) = A193376(n-1,n) for n >= 2. - R. J. Mathar, Aug 23 2011
a(n) = y(n,n), where y(m+2,n) = y(m+1,n) + n*y(m,n) with y(0,n) = 0 and y(1,n) = 1 for all n. - Benedict W. J. Irwin, Nov 03 2016
a(n) = [x^n] x/(1 - x - n*x^2). - Ilya Gutkovskiy, Oct 10 2017
a(n) = Sum_{s = 0..floor((n-1)/2)} binomial(n-1-s, s) * n^s. - Petros Hadjicostas, Dec 24 2019
From G. C. Greubel, Dec 27 2019: (Start)
a(n) = (sqrt(n))^n * Fibonacci(n, 1/sqrt(n)), with a(0)=0.
a(n) = (-sqrt(n)*i)^(n-1)*ChebyshevU(n-1, i/(2*sqrt(n))), with a(0)=0. (End)