A084076
Length of list created by n substitutions k -> Range[-1-abs(k), abs(k)+1] starting with {1}.
Original entry on oeis.org
1, 5, 27, 157, 963, 6141, 40323, 270845, 1852419, 12857341, 90337283, 641286141, 4592533507, 33139654653, 240723001347, 1758796578813, 12916805074947, 95300512382973, 706044251602947, 5250379998560253, 39176121681444867
Offset: 0
{1}
{-2,-1,0,1,2}
{-3,-2,-1,0,1,2,3,-2,-1,0,1,2,-1,0,1,-2,-1,0,1,2,-3,-2,-1,0,1,2,3}
Third column (m=2) of triangle
A115193, called C(1, 2).
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-5*x -(1- x)*Sqrt(1-8*x))/(4*x^2*(1+x)) )); // G. C. Greubel, Nov 23 2022
-
Rest@CoefficientList[InverseSeries[Series[ -((1+5*n+2*n^2-(1+2*n)*Sqrt[1+6*n+n^2] )/(4*n^2)), {n, 0, 28}]], n] or Length/@Flatten/@NestList[ # /. k_Integer :> Range[ -1-Abs[k], Abs[k]+1]&, {1}, 8]
Flatten[{1,RecurrenceTable[{(n+2)*(7*n-5)*a[n] == (7*n-2)*(7*n-1)*a[n-1] + 4*(2*n-1)*(7*n+2)*a[n-2],a[1]==5,a[2]==27},a,{n,20}]}] (* Vaclav Kotesovec, Oct 14 2012 *)
-
{a(n) = my(L); L = [1]; if(n < 0, 0, for(i = 1, n, L = concat([ vector(3 + 2*abs(k), i, i - abs(k) - 2) | k <- L])); #L)}; /* Michael Somos, Nov 23 2022 */
-
def A084076_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-5*x -(1-x)*sqrt(1-8*x))/(4*x^2*(1+x)) ).list()
A084076_list(40) # G. C. Greubel, Nov 23 2022
A084078
Length of list created by n substitutions k -> Range[-abs(k+1), abs(k-1), 2] starting with {0}.
Original entry on oeis.org
1, 2, 4, 10, 24, 66, 172, 498, 1360, 4066, 11444, 34970, 100520, 312066, 911068, 2862562, 8457504, 26824386, 80006116, 255680170, 768464312, 2471150402, 7474561164, 24161357010, 73473471344, 238552980386, 728745517972
Offset: 0
{0}, {-1,1}, {0,2,-2,0}, {-1,1,-3,-1,1,-1,1,3,-1,1}
-
I:=[1,2,4,10]; [n le 4 select I[n] else (6*(35*n^2-125*n+14)*Self(n-1) + (275*n^4 -1870*n^3 +3757*n^2 -1268*n -1806)*Self(n-2) -6*(5*n^2-5*n-28)*Self(n-3) + (n-5)*(n-3)*(25*n^2-45*n-28)*Self(n-4))/((n-1)*(n+1)*(25*n^2-95*n+42)): n in [1..41]]; // G. C. Greubel, Nov 24 2022
-
Join[{1}, 2*Rest@CoefficientList[InverseSeries[Series[(-1 -6*n -8*n^2 + (1+ 2*n)^2*Sqrt[1+4*n])/(2*(n +4*n^2 +4*n^3)), {n, 0, 40}]], n]]
Length/@ Flatten/@ NestList[# /. k_Integer :> Range[-Abs[k+1], Abs[k-1], 2] &, {0}, 12]
-
def replace(L): return [i for k in L for i in range(-abs(k + 1), 1 + abs(k - 1), 2)]
def aList(upto, L=[0]): return [1] + [len((L := replace(L))) for _ in range(upto)]
print(aList(12)) # Peter Luschny, Nov 16 2024
-
@CachedFunction
def a(n): # a = A084078
if (n<4): return (1,2,4,10)[n]
else: return (6*(35*n^2 -55*n -76)*a(n-1) +(275*n^4-770*n^3-203*n^2+1736*n-912)*a(n-2) -6*(5*n^2+5*n-28)*a(n-3) +(n-4)*(n-2)*(25*n^2+5*n-48)*a(n-4))/(n*(n+2)*(25*n^2-45*n-28))
[a(n) for n in range(41)] # G. C. Greubel, Nov 24 2022
A084077
Length of list created by n substitutions k -> Range(-abs(k+1), abs(k-1)) starting with {1}.
Original entry on oeis.org
1, 3, 11, 41, 159, 633, 2575, 10657, 44735, 190017, 815231, 3527681, 15378687, 67478401, 297777407, 1320753665, 5884652543, 26326301697, 118211192831, 532574203905, 2406726828031, 10906541371393
Offset: 0
{1}, {-2,-1,0}, {-1,0,1,2,3,0,1,2,-1,0,1}
-
I:=[1,3,11]; [n le 3 select I[n] else (3*(7*n^2 -11*n +6)*Self(n-1) + 2*(28*n^2 -51*n +14)*Self(n-2) + 4*(n-2)*(7*n-4)*Self(n-3))/((n+2)*(7*n-11)): n in [1..41]]; // G. C. Greubel, Nov 23 2022
-
Length/@Flatten/@NestList[ # /. k_Integer:>Range[ -Abs[k+1], Abs[k-1]]&, {1}, 8]
Flatten[{1,RecurrenceTable[{(n+3)*(7*n-4)*a[n] == 3*(7*n^2+3*n+2)*a[n-1] + 2*(28*n^2+5*n-9)*a[n-2] + 4*(n-1)*(7*n+3)*a[n-3],a[1]==3,a[2]==11,a[3]==41},a,{n,20}]}] (* Vaclav Kotesovec, Oct 14 2012 *)
-
@CachedFunction
def a(n): # a = A084077
if (n<3): return (1,3,11)[n]
else: return (3*(7*n^2 +3*n +2)*a(n-1) + 2*(28*n^2 +5*n -9)*a(n-2) + 4*(n-1)*(7*n+3)*a(n-3))/((n+3)*(7*n-4))
[a(n) for n in range(31)] # G. C. Greubel, Nov 23 2022
A215067
Number of Motzkin n-paths avoiding odd-numbered steps that are up steps.
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 10, 21, 37, 80, 146, 322, 602, 1347, 2563, 5798, 11181, 25512, 49720, 114236, 224540, 518848, 1027038, 2384538, 4748042, 11068567, 22150519, 51817118, 104146733, 244370806, 493012682, 1159883685, 2347796965, 5536508864, 11239697816, 26560581688, 54061835288
Offset: 0
a(5) = 6: fUfFd, fUfDf, fUdUd, fUdFf, fFfUd, fFfFf showing odd-numbered steps in lower case.
-
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, b(x-1, y) +b(x-1, y+1) +
`if`(irem(x, 2)=1, 0, b(x-1, y-1)) ))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Apr 04 2013
-
f[n_,x_,y_]:=f[n,x,y] = If[x>n||y<0,0,If[x==n&&y==0,1, If[EvenQ[x],0,f[n,x+1,y+1]] +f[n,x+1,y-1] + f[n,x+1,y]]]; Table[f[n,0,0],{n,0,35}]
-
{a(n)=polcoeff((1/x)*serreverse(x*(3+2*x+x^2 - sqrt((1+x^2)*(1+4*x+x^2)+x^2*O(x^n)))/(2*(1+x+x^2+x^2*O(x^n)))),n)} \\ Paul D. Hanna, Aug 02 2012
-
from mpmath import mp
mp.dps = 25; mp.pretty = True
def A215067(n) :
m = n%2; r = n//2 if n>0 else 1
return r^(1-m)*mp.hyper([-r,1-r-2*m,1+r+m],[(3-m)/2,(4-m)/2],1/4)
[int(A215067(i)) for i in (0..32)] # Peter Luschny, Aug 03 2012
A084079
Sum of absolute values of lists created by n substitutions k -> Range[ -Abs[k+1],Abs[k-1],2] starting with {1}.
Original entry on oeis.org
1, 2, 7, 16, 53, 130, 431, 1104, 3689, 9730, 32775, 88288, 299501
Offset: 0
Sums of absolute values of {1}, {-2,0}, {-1,1,3,-1,1}, {0,2,-2,0,-4,-2,0,2,0,2,-2,0} are 1,2,7,16
-
Plus@@@Abs/@Flatten/@NestList[ # /. k_Integer :> Range[ -Abs[k+1], Abs[k-1], 2]&, {1}, 12]
Showing 1-5 of 5 results.
Comments