cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A084076 Length of list created by n substitutions k -> Range[-1-abs(k), abs(k)+1] starting with {1}.

Original entry on oeis.org

1, 5, 27, 157, 963, 6141, 40323, 270845, 1852419, 12857341, 90337283, 641286141, 4592533507, 33139654653, 240723001347, 1758796578813, 12916805074947, 95300512382973, 706044251602947, 5250379998560253, 39176121681444867
Offset: 0

Views

Author

Wouter Meeussen, May 11 2003

Keywords

Comments

2*a(n-1) is the second diagonal of the triangle A115195.
Row sums of A167432. Hankel transform is A167435. - Paul Barry, Nov 03 2009

Examples

			{1}
{-2,-1,0,1,2}
{-3,-2,-1,0,1,2,3,-2,-1,0,1,2,-1,0,1,-2,-1,0,1,2,-3,-2,-1,0,1,2,3}
		

Crossrefs

Third column (m=2) of triangle A115193, called C(1, 2).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-5*x -(1- x)*Sqrt(1-8*x))/(4*x^2*(1+x)) )); // G. C. Greubel, Nov 23 2022
    
  • Mathematica
    Rest@CoefficientList[InverseSeries[Series[ -((1+5*n+2*n^2-(1+2*n)*Sqrt[1+6*n+n^2] )/(4*n^2)), {n, 0, 28}]], n] or Length/@Flatten/@NestList[ # /. k_Integer :> Range[ -1-Abs[k], Abs[k]+1]&, {1}, 8]
    Flatten[{1,RecurrenceTable[{(n+2)*(7*n-5)*a[n] == (7*n-2)*(7*n-1)*a[n-1] + 4*(2*n-1)*(7*n+2)*a[n-2],a[1]==5,a[2]==27},a,{n,20}]}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    {a(n) = my(L); L = [1]; if(n < 0, 0, for(i = 1, n, L = concat([ vector(3 + 2*abs(k), i, i - abs(k) - 2) | k <- L])); #L)}; /* Michael Somos, Nov 23 2022 */
  • Sage
    def A084076_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-5*x -(1-x)*sqrt(1-8*x))/(4*x^2*(1+x)) ).list()
    A084076_list(40) # G. C. Greubel, Nov 23 2022
    

Formula

G.f. is the series reversion of -((1 + 5*x + 2*x^2 - (1 + 2*x)*sqrt(1 + 6*x + x^2))/(4*x^2)).
G.f.: 2*((c(2*x))^3)/(1+c(2*x)) with the o.g.f. c(x) of A000108 (Catalan numbers).
a(n) = Sum_{j=1..n+1} A115195(n, j), n >= 0.
G.f.: (-1 + (1-x)*c(2*x))/(x*(1+x)); cf. A115139. - Wolfdieter Lang, Feb 23 2006
D-finite with recurrence: (n+2)*(7*n-5)*a(n) = (7*n-2)*(7*n-1)*a(n-1) + 4*(2*n-1)*(7*n+2)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 7*2^(3n+3)/(9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
D-finite with recurrence (n+2)*a(n) = 2*(4*n+1)*a(n-1) + (n+16)*a(n-2) - 4*(2*n-3)*a(n-3). - R. J. Mathar, Mar 10 2022
a(n) = ( (7*n-1)*(7*n-2)*a(n-1) + 4*(2*n-1)*(7*n+2)*a(n-2) )/((n+2)*(7*n-5)), with a(0) = 1, a(1) = 5. - G. C. Greubel, Nov 23 2022

A084078 Length of list created by n substitutions k -> Range[-abs(k+1), abs(k-1), 2] starting with {0}.

Original entry on oeis.org

1, 2, 4, 10, 24, 66, 172, 498, 1360, 4066, 11444, 34970, 100520, 312066, 911068, 2862562, 8457504, 26824386, 80006116, 255680170, 768464312, 2471150402, 7474561164, 24161357010, 73473471344, 238552980386, 728745517972
Offset: 0

Views

Author

Wouter Meeussen, May 11 2003

Keywords

Examples

			{0}, {-1,1}, {0,2,-2,0}, {-1,1,-3,-1,1,-1,1,3,-1,1}
		

Crossrefs

Programs

  • Magma
    I:=[1,2,4,10]; [n le 4 select I[n] else (6*(35*n^2-125*n+14)*Self(n-1) + (275*n^4 -1870*n^3 +3757*n^2 -1268*n -1806)*Self(n-2) -6*(5*n^2-5*n-28)*Self(n-3) + (n-5)*(n-3)*(25*n^2-45*n-28)*Self(n-4))/((n-1)*(n+1)*(25*n^2-95*n+42)): n in [1..41]]; // G. C. Greubel, Nov 24 2022
    
  • Mathematica
    Join[{1}, 2*Rest@CoefficientList[InverseSeries[Series[(-1 -6*n -8*n^2 + (1+ 2*n)^2*Sqrt[1+4*n])/(2*(n +4*n^2 +4*n^3)), {n, 0, 40}]], n]]
    Length/@ Flatten/@ NestList[# /. k_Integer :> Range[-Abs[k+1], Abs[k-1], 2] &, {0}, 12]
  • Python
    def replace(L): return [i for k in L for i in range(-abs(k + 1), 1 + abs(k - 1), 2)]
    def aList(upto, L=[0]): return [1] + [len((L := replace(L))) for _ in range(upto)]
    print(aList(12))  # Peter Luschny, Nov 16 2024
  • SageMath
    @CachedFunction
    def a(n): # a = A084078
        if (n<4): return (1,2,4,10)[n]
        else: return (6*(35*n^2 -55*n -76)*a(n-1) +(275*n^4-770*n^3-203*n^2+1736*n-912)*a(n-2) -6*(5*n^2+5*n-28)*a(n-3) +(n-4)*(n-2)*(25*n^2+5*n-48)*a(n-4))/(n*(n+2)*(25*n^2-45*n-28))
    [a(n) for n in range(41)] # G. C. Greubel, Nov 24 2022
    

Formula

a(2*n-1) = A027307(n), n >= 1.
a(n) = 2*A084075(n-1), n >= 1.
a(n) = ( 6*(35*n^2 -55*n -76)*a(n-1) + (275*n^4 -770*n^3 -203*n^2 +1736*n -912)*a(n-2) - 6*(5*n^2 +5*n -28)*a(n-3) + (n-4)*(n-2)*(25*n^2+5*n-48)*a(n-4) )/(n*(n+2)*(25*n^2 -45*n -28)), for n >= 4. - G. C. Greubel, Nov 24 2022
a(2*n) = A032349(n+1), n >= 0. - Alexander Burstein, Nov 19 2023

A084077 Length of list created by n substitutions k -> Range(-abs(k+1), abs(k-1)) starting with {1}.

Original entry on oeis.org

1, 3, 11, 41, 159, 633, 2575, 10657, 44735, 190017, 815231, 3527681, 15378687, 67478401, 297777407, 1320753665, 5884652543, 26326301697, 118211192831, 532574203905, 2406726828031, 10906541371393
Offset: 0

Views

Author

Wouter Meeussen, May 11 2003

Keywords

Examples

			{1}, {-2,-1,0}, {-1,0,1,2,3,0,1,2,-1,0,1}
		

Crossrefs

Programs

  • Magma
    I:=[1,3,11]; [n le 3 select I[n] else (3*(7*n^2 -11*n +6)*Self(n-1) + 2*(28*n^2 -51*n +14)*Self(n-2) + 4*(n-2)*(7*n-4)*Self(n-3))/((n+2)*(7*n-11)): n in [1..41]]; // G. C. Greubel, Nov 23 2022
    
  • Mathematica
    Length/@Flatten/@NestList[ # /. k_Integer:>Range[ -Abs[k+1], Abs[k-1]]&, {1}, 8]
    Flatten[{1,RecurrenceTable[{(n+3)*(7*n-4)*a[n] == 3*(7*n^2+3*n+2)*a[n-1] + 2*(28*n^2+5*n-9)*a[n-2] + 4*(n-1)*(7*n+3)*a[n-3],a[1]==3,a[2]==11,a[3]==41},a,{n,20}]}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • SageMath
    @CachedFunction
    def a(n):  # a = A084077
        if (n<3): return (1,3,11)[n]
        else: return (3*(7*n^2 +3*n +2)*a(n-1) + 2*(28*n^2 +5*n -9)*a(n-2) + 4*(n-1)*(7*n+3)*a(n-3))/((n+3)*(7*n-4))
    [a(n) for n in range(31)] # G. C. Greubel, Nov 23 2022

Formula

invOGF satisfies n - (1+3*n)*a(n) - 2*n*(1+n)*a(n)^2 - 2*n^2*a(n)^3 = 0. [Is it true?]
Recurrence: (n+3)*(7*n-4)*a(n) = 3*(7*n^2+3*n+2)*a(n-1) + 2*(28*n^2+5*n-9)*a(n-2) + 4*(n-1)*(7*n+3)*a(n-3). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ sqrt(52+34*sqrt(2))*(2+2*sqrt(2))^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012

A215067 Number of Motzkin n-paths avoiding odd-numbered steps that are up steps.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 21, 37, 80, 146, 322, 602, 1347, 2563, 5798, 11181, 25512, 49720, 114236, 224540, 518848, 1027038, 2384538, 4748042, 11068567, 22150519, 51817118, 104146733, 244370806, 493012682, 1159883685, 2347796965, 5536508864, 11239697816, 26560581688, 54061835288
Offset: 0

Views

Author

David Scambler, Aug 02 2012

Keywords

Comments

This sequence interleaves the counts of the closely related sequences A109081 and A106228.
a(n) is the number of (peakless) Motzkin paths of length n where every pair of matching up and down edges occupies positions of the same parity. Equivalently, the number of RNA secondary structures on n vertices where only vertices of the same parity can be matched. - Alexander Burstein, May 17 2021

Examples

			a(5) = 6: fUfFd, fUfDf, fUdUd, fUdFf, fFfUd, fFfFf showing odd-numbered steps in lower case.
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
          `if`(x=0, 1, b(x-1, y) +b(x-1, y+1) +
          `if`(irem(x, 2)=1, 0, b(x-1, y-1)) ))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Apr 04 2013
  • Mathematica
    f[n_,x_,y_]:=f[n,x,y] = If[x>n||y<0,0,If[x==n&&y==0,1, If[EvenQ[x],0,f[n,x+1,y+1]] +f[n,x+1,y-1] + f[n,x+1,y]]]; Table[f[n,0,0],{n,0,35}]
  • PARI
    {a(n)=polcoeff((1/x)*serreverse(x*(3+2*x+x^2 - sqrt((1+x^2)*(1+4*x+x^2)+x^2*O(x^n)))/(2*(1+x+x^2+x^2*O(x^n)))),n)} \\ Paul D. Hanna, Aug 02 2012
    
  • Sage
    from mpmath import mp
    mp.dps = 25; mp.pretty = True
    def A215067(n) :
        m = n%2; r = n//2 if n>0 else 1
        return r^(1-m)*mp.hyper([-r,1-r-2*m,1+r+m],[(3-m)/2,(4-m)/2],1/4)
    [int(A215067(i)) for i in (0..32)]  # Peter Luschny, Aug 03 2012

Formula

a(2*n) = Sum_{k=0..n} binomial(n+k-1,n-k) * binomial(n,k)/(n-k+1);
a(2*n+1) = Sum_{k=0..n} binomial(n+k+1,n-k) * binomial(n,k)/(n-k+1).
G.f.: (1/x)*Series_Reversion( x*(3+2*x+x^2 - sqrt((1+x^2)*(1+4*x+x^2)))/(2*(1+x+x^2)) ). - Paul D. Hanna, Aug 02 2012
G.f. satisfies: A(x) = G(x*A(x)) where G(x) = A(x/G(x)) = (3+2*x+x^2 + sqrt((1+x^2)*(1+4*x+x^2)))/4. - Paul D. Hanna, Aug 02 2012
G.f. satisfies: Series_Reversion(x*A(x)) = x - x^2*F(-x) where F(x) = g.f. of A114465. - Paul D. Hanna, Aug 02 2012
a(n) = 3_F_2([-r,1-r-2*m,1+r+m],[(3-m)/2,(4-m)/2],1/4)*r^(1-m) for n>0 where m = n mod 2 and r = floor(n/2). - Peter Luschny, Aug 03 2012

A084079 Sum of absolute values of lists created by n substitutions k -> Range[ -Abs[k+1],Abs[k-1],2] starting with {1}.

Original entry on oeis.org

1, 2, 7, 16, 53, 130, 431, 1104, 3689, 9730, 32775, 88288, 299501
Offset: 0

Views

Author

Wouter Meeussen, May 11 2003

Keywords

Comments

Sums of absolute of sublists from A084075.

Examples

			Sums of absolute values of {1}, {-2,0}, {-1,1,3,-1,1}, {0,2,-2,0,-4,-2,0,2,0,2,-2,0} are 1,2,7,16
		

Crossrefs

Cf. A084075.

Programs

  • Mathematica
    Plus@@@Abs/@Flatten/@NestList[ # /. k_Integer :> Range[ -Abs[k+1], Abs[k-1], 2]&, {1}, 12]
Showing 1-5 of 5 results.