cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A282845 Number of ways to write n as an ordered sum of 6 prime power palindromes (A084092).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 6, 21, 56, 126, 246, 432, 702, 1077, 1576, 2232, 3072, 4112, 5352, 6801, 8422, 10197, 12102, 14117, 16146, 18177, 20112, 21882, 23382, 24661, 25566, 26136, 26316, 26181, 25560, 24677, 23436, 21981, 20226, 18486, 16536, 14642, 12702, 10962, 9166, 7662, 6222, 5042, 3912, 3096, 2306, 1746, 1236, 921, 600
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 22 2017

Keywords

Comments

Is there k which satisfies a(n) > 0 for all n > k?

Examples

			a(7) = 6 because we have:
[2, 1, 1, 1, 1, 1]
[1, 2, 1, 1, 1, 1]
[1, 1, 2, 1, 1, 1]
[1, 1, 1, 2, 1, 1]
[1, 1, 1, 1, 2, 1]
[1, 1, 1, 1, 1, 2]
		

Crossrefs

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[(x + Sum[Boole[PrimePowerQ[k] && PalindromeQ[k]] x^k, {k, 1, nmax}])^6, {x, 0, nmax}], x]

Formula

G.f.: (Sum_{k>=1} x^A084092(k))^6.

A192137 Numbers m such that their concatenation of prime divisors are palindromic numbers.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 16, 25, 27, 32, 39, 49, 64, 69, 81, 101, 117, 119, 121, 125, 128, 129, 131, 151, 159, 181, 191, 207, 219, 243, 249, 256, 259, 313, 329, 339, 343, 351, 353
Offset: 1

Views

Author

Jaroslav Krizek, Jun 24 2011

Keywords

Comments

The corresponding values of palindromic concatenation in A192138. Superset of A002385 (palindromic primes), A192139 and A192140.

Examples

			Concatenation of prime divisors of 39 = 3 * 13 is 313 (palindromic number).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,500],PalindromeQ[FromDigits[Flatten[IntegerDigits/@ FactorInteger[ #][[All,1]]]]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 02 2017 *)

A192139 Powers p^m, m >= 0, of palindromic primes p (A002385).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 25, 27, 32, 49, 64, 81, 101, 121, 125, 128, 131, 151, 181, 191, 243, 256, 313, 343, 353, 373, 383, 512, 625, 727, 729, 757, 787, 797, 919, 929, 1024, 1331, 2048, 2187, 2401, 3125, 4096, 6561, 8192, 10201, 10301, 10501, 10601, 11311, 11411, 12421, 12721
Offset: 1

Views

Author

Jaroslav Krizek, Jun 24 2011

Keywords

Comments

Superset of A002385 and A084092. Subset of A192137.

Crossrefs

Programs

Extensions

Missing term 625 inserted and more terms added by M. F. Hasler, May 11 2015

A192138 Palindromic concatenation of prime divisors of numbers from A192137.

Original entry on oeis.org

2, 3, 2, 5, 7, 2, 3, 11, 2, 5, 3, 2, 313, 7, 2, 323, 3, 101, 313, 717, 11, 5, 2, 343, 131, 151, 353, 181, 191, 323, 373, 3, 383, 2, 737, 313, 747, 3113, 7, 313, 353, 373, 383, 343, 1331, 31113, 767, 353, 313, 2, 323, 5, 373, 3223, 797, 727, 3, 383, 757, 787, 3553
Offset: 1

Views

Author

Jaroslav Krizek, Jun 24 2011

Keywords

Examples

			a(13) = 313 because A192137(13) = 39 = 3 * 13.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := FromDigits[Flatten[IntegerDigits /@ FactorInteger[n][[;; , 1]]]]; Select[f /@ Range[2, 1900], PalindromeQ] (* Amiram Eldar, Aug 06 2024 *)

Extensions

More terms from Amiram Eldar, Aug 06 2024

A192140 Palindromic numbers m such that their concatenation of prime divisors are also palindromic numbers.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 101, 121, 131, 151, 181, 191, 313, 343, 353, 373, 383, 727, 747, 757, 787, 797, 919, 929, 1331, 10001, 10201, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14641, 14741, 15451, 15551, 16061, 16361
Offset: 1

Views

Author

Jaroslav Krizek, Jun 24 2011

Keywords

Comments

The corresponding values of palindromic concatenation in A192141.
Superset of A002385 (palindromic primes) and A084092 (prime power decimal palindromes).
Subset of A002113 (palindromic numbers) and A192137.

Examples

			Concatenation of prime divisors of number 747 = 3^2 * 83 is 383 (palindromic number).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := FromDigits[Flatten[IntegerDigits /@ FactorInteger[n][[;; , 1]]]]; Select[Range[2, 20000], And @@ (PalindromeQ /@ {#, f[#]}) &] (* Amiram Eldar, Aug 06 2024 *)

Extensions

More terms from Amiram Eldar, Aug 06 2024

A192141 Palindromic concatenation of prime divisors of numbers from A192140.

Original entry on oeis.org

2, 3, 2, 5, 7, 2, 3, 11, 101, 11, 131, 151, 181, 191, 313, 7, 353, 373, 383, 727, 383, 757, 787, 797, 919, 929, 11, 73137, 101, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 11, 14741, 15451, 15551, 16061, 16361, 16561, 16661
Offset: 1

Views

Author

Jaroslav Krizek, Jun 24 2011

Keywords

Examples

			a(21) = 383 because A192140(21) = 747 = 3 * 83.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := FromDigits[Flatten[IntegerDigits /@ FactorInteger[n][[;; , 1]]]]; f /@ Select[Range[2, 20000], And @@ (PalindromeQ /@ {#, f[#]}) &] (* Amiram Eldar, Aug 06 2024 *)

Extensions

More terms from Amiram Eldar, Aug 06 2024

A334139 Numbers that are equal to the LCM of their palindromic divisors.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 20, 21, 22, 24, 28, 30, 33, 35, 36, 40, 42, 44, 45, 55, 56, 60, 63, 66, 70, 72, 77, 84, 88, 90, 99, 101, 105, 110, 111, 120, 121, 126, 131, 132, 140, 141, 151, 154, 161, 165, 168, 171, 180, 181, 191, 198, 202, 210
Offset: 1

Views

Author

Bernard Schott, Apr 15 2020

Keywords

Comments

These terms are the fixed points of A087999.
All the palindromes are in the sequence.
Now, if m is non-palindromic, then m is a term iff m = q_1^r_1 *...* q_i^r_i *...* q_k^r_k, where q_1 <...=2, r_i >= 1 and every divisor q_i^r_i is a palindrome; these q_i^r_i are in A084092 (see examples).
The first 40 terms, from 1 to 99, are exactly the 40 smallest divisors of 27720, hence the first 40 terms of A178864, but this sequence, which is infinite, is not a duplicate. Also, 27720 is in this sequence.

Examples

			2, 5, 131 are terms as palindromic primes.
111 = 3 * 37 is a term because 111 is a palindrome, so LCM(1,3,37,111) = 111.
27720 = 2^3 * 3^2 * 5 * 7 * 11, every 2^3=8, 3^2=9, 5, 7, 11 is a palindrome so 27720 is another term, no palindromic.
		

Crossrefs

Subsequences: A002113, A002385, A062687, A084092.

Programs

  • Mathematica
    Select[Range[200], LCM @@ Select[Divisors[#], PalindromeQ] == # &] (* Amiram Eldar, Apr 15 2020 *)
  • PARI
    ispal(x) = my(d=digits(x)); d == Vecrev(d);
    isok(n) = lcm(select(ispal,  divisors(n))) == n; \\ Michel Marcus, Apr 16 2020

A084093 Prime power decimal palindromes that are not prime.

Original entry on oeis.org

1, 4, 8, 9, 121, 343, 1331, 10201, 14641, 94249, 1030301, 104060401, 900075181570009, 10022212521222001, 12124434743442121, 12323244744232321, 12341234943214321, 1022321210249420121232201, 1210024420147410244200121
Offset: 1

Views

Author

Reinhard Zumkeller, May 11 2003

Keywords

Comments

A084092 without A002385.
a(n) = A072037(n-1) for n > 1. - Georg Fischer, Oct 19 2018

Examples

			a(9)=14641=11^4; a(10)=94249=307^2=A000040(63)^2;
a(11)=1030301=101^3=A000040(26)^3.
		

Crossrefs

Extensions

a(13)-a(17) from Donovan Johnson, Feb 22 2008
Missing term 104060401 added by Donovan Johnson, Jul 02 2011
Showing 1-8 of 8 results.