A084152 Exponential self-convolution of Jacobsthal numbers (divided by 2).
0, 0, 1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575, 244335800775, 977343902151, 3909374210503, 15637499638215, 62549992960455
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (3,6,-8).
Programs
-
Magma
[(4^n-2+(-2)^n)/18: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
-
Mathematica
Join[{a=0,b=0},Table[c=2*b+8*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011*) LinearRecurrence[{3,6,-8},{0,0,1},30] (* Harvey P. Dale, Nov 11 2011 *)
-
Python
def A084152(n): return ((m:=1<
>1|1)//3) # Chai Wah Wu, Apr 25 2025 -
SageMath
[(4^n-2+(-2)^n)/18 for n in range(41)] # G. C. Greubel, Oct 11 2022
Formula
a(n) = (4^n - 2 + (-2)^n)/18.
G.f.: x^2/((1-x)*(1+2*x)*(1-4*x)).
a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3).
E.g.f.: (exp(2*x) - exp(-x))^2/18 = (exp(4*x) - 2*exp(x) + exp(-x))/18.
Binomial transform of 0, 0, 1, 0, 9, 0, 81, ... .
a(n) = floor(2^n/3)ceiling(2^n/3)/2. - Paul Barry, Apr 28 2004