cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084152 Exponential self-convolution of Jacobsthal numbers (divided by 2).

Original entry on oeis.org

0, 0, 1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575, 244335800775, 977343902151, 3909374210503, 15637499638215, 62549992960455
Offset: 0

Views

Author

Paul Barry, May 16 2003

Keywords

Crossrefs

Except for initial terms, same as A015249 and A084175.

Programs

Formula

a(n) = (4^n - 2 + (-2)^n)/18.
G.f.: x^2/((1-x)*(1+2*x)*(1-4*x)).
a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3).
E.g.f.: (exp(2*x) - exp(-x))^2/18 = (exp(4*x) - 2*exp(x) + exp(-x))/18.
Binomial transform of 0, 0, 1, 0, 9, 0, 81, ... .
a(n) = A001045(n)*A078008(n)/2.
a(n) = floor(2^n/3)ceiling(2^n/3)/2. - Paul Barry, Apr 28 2004