cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A084175 Jacobsthal oblong numbers.

Original entry on oeis.org

0, 1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575, 244335800775, 977343902151, 3909374210503, 15637499638215, 62549992960455
Offset: 0

Views

Author

Paul Barry, May 18 2003

Keywords

Comments

Inverse binomial transform is A001019 doubled up.
Binomial transform is A084177.
Partial sums of A003683.

Crossrefs

Except for initial terms, same as A015249 and A084152.

Programs

Formula

a(n) = A001045(n)*A001045(n+1).
a(n) = (2*4^n - (-2)^n - 1)/9;
a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3), a(0)=0, a(1)=1, a(2)=3.
G.f.: x/((1+2*x)*(1-x)*(1-4*x)).
E.g.f.: (2*exp(4*x) - exp(x) - exp(-2*x))/9.
a(n+1) - 4*a(n) = 1, -1, 3, -5, 11, ... = A001045(n+1) signed. - Paul Curtz, May 19 2008
a(n) = round(2^n/3) * round(2^(n+1)/3). - Gary Detlefs, Feb 10 2010
From Peter Bala, Mar 30 2015: (Start)
The shifted o.g.f. A(x) := 1/( (1 + 2*x)*(1 - x)*(1 - 4*x) ) = 1/(1 - 3*x - 6*x^2 + 8*x^3). Hence A(x) == 1/(1 - 3*x + 3*x^2 - x^3) (mod 9) == 1/(1 - x)^3 (mod 9). It follows by Theorem 1 of Heninger et al. that (A(x))^(1/3) = 1 + x + 4*x^2 + 10*x^3 + ... has integral coefficients.
Sum_{n >= 0} a(n+1)*x^n = exp( Sum_{n >= 1} J(3*n)/J(n)*x^n/n ), where J(n) = A001045(n) are the Jacobsthal numbers. Cf. A001656, A099930. (End)

A015249 Gaussian binomial coefficient [ n,2 ] for q = -2.

Original entry on oeis.org

1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575, 244335800775, 977343902151, 3909374210503, 15637499638215
Offset: 2

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Except for initial terms, same as A084152 and A084175.

Programs

Formula

G.f.: x^2/((1-x)*(1+2*x)*(1-4*x)).
From Vincenzo Librandi, Mar 20 2011: (Start)
a(n) = 5*a(n-1) - 4*a(n-2) + (-1)^n *2^(n-2), n >= 4.
a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3), n >= 3. (End)
a(n) = (1/18)*(4^n - 2 + (-1)^n*2^n). - R. J. Mathar, Mar 21 2011
E.g.f.: 2*exp(x)*sinh(3*x/2)^2/9. - Stefano Spezia, Apr 25 2025

A249993 Expansion of 1/((1+x)*(1+2*x)*(1-4*x)).

Original entry on oeis.org

1, 1, 11, 29, 147, 525, 2227, 8653, 35123, 139469, 559923, 2235597, 8950579, 35785933, 143176499, 572640461, 2290692915, 9162509517, 36650562355, 146601200845, 586406900531, 2345623407821, 9382502019891, 37529991302349, 150119998763827, 600479927946445
Offset: 0

Views

Author

Alex Ratushnyak, Dec 27 2014

Keywords

Crossrefs

Cf. A249992.
Cf. A006095, A171477 for g.f. 1/((1-x)*(1-2*x)*(1-4*x)).
Cf. A015249, A084152, A084175 for g.f. 1/((1-x)*(1+2*x)*(1-4*x)).
Cf. A109765 for g.f. 1/((1+x)*(1-2*x)*(1-4*x)).

Programs

  • Magma
    [(2^(2*n+3) +(-1)^n*(5*2^(n+1)-3))/15: n in [0..40]]; // G. C. Greubel, Oct 10 2022
    
  • Mathematica
    CoefficientList[Series[1/((1+x)(1+2x)(1-4x)),{x,0,30}],x] (* or *) LinearRecurrence[{1,10,8},{1,1,11},30] (* Harvey P. Dale, Dec 13 2018 *)
  • PARI
    Vec(1/((1+x)*(1+2*x)*(1-4*x)) + O(x^40)) \\ Michel Marcus, Dec 28 2014
    
  • SageMath
    [(2^(2*n+3) +(-1)^n*(5*2^(n+1)-3))/15 for n in range(41)] # G. C. Greubel, Oct 10 2022

Formula

G.f.: 1/((1+x)*(1+2*x)*(1-4*x)).
a(n) = ( 2^(3+2*n) + (5*2^(1+n) - 3)*(-1)^n )/15. Colin Barker, Dec 28 2014
a(n) = a(n-1) + 10*a(n-2) + 8*a(n-3). - Colin Barker, Dec 28 2014
E.g.f.: (1/15)*(10*exp(-2*x) - 3*exp(-x) + 8*exp(4*x)). - G. C. Greubel, Oct 10 2022

A084153 Binomial transform of a Jacobsthal convolution.

Original entry on oeis.org

0, 0, 1, 6, 33, 170, 861, 4326, 21673, 108450, 542421, 2712446, 13562913, 67815930, 339082381, 1695417366, 8477097753, 42385510610, 211927596741, 1059638071086, 5298190530193, 26490953000490, 132454765701501, 662273829905606
Offset: 0

Views

Author

Paul Barry, May 16 2003

Keywords

Comments

Binomial transform of A084152.

Crossrefs

Cf. A084152.

Programs

  • Magma
    [(5^n -2^(n+1) +(-1)^n)/18: n in [0..40]]; // G. C. Greubel, Oct 10 2022
    
  • Mathematica
    LinearRecurrence[{6,-3,-10}, {0,0,1}, 41] (* G. C. Greubel, Oct 10 2022 *)
  • SageMath
    [(5^n -2^(n+1) +(-1)^n)/18 for n in range(41)] # G. C. Greubel, Oct 10 2022

Formula

a(n) = (5^n - 2*2^n + (-1)^n)/18.
G.f.: x^2/((1+x)*(1-2*x)*(1-5*x)).
E.g.f.: exp(x)*(exp(2*x) - exp(-x))^2/18 = (exp(5*x) - 2*exp(2*x) + exp(-x))/18.
Showing 1-4 of 4 results.