cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A015109 Triangle of Gaussian (or q-binomial) coefficients for q = -2.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 1, 3, 3, 1, 1, -5, 15, -5, 1, 1, 11, 55, 55, 11, 1, 1, -21, 231, -385, 231, -21, 1, 1, 43, 903, 3311, 3311, 903, 43, 1, 1, -85, 3655, -25585, 56287, -25585, 3655, -85, 1, 1, 171, 14535, 208335, 875007, 875007, 208335, 14535, 171, 1, 1, -341, 58311
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T(n,k)=T(n,n-k); k=0,...,n; n=0,1,...) or square array (A(n,r)=A(r,n)=T(n+r,r), read by antidiagonals). The diagonals of the former (or rows/columns of the latter) are A000012 (k=0), A077925 (k=1), A015249 (k=2), A015266 (k=3), A015287 (k=4), A015305 (k=5), A015323 (k=6), A015338 (k=7), A015356 (k=8), A015371 (k=9), A015386 (k=10), A015405 (k=11), A015423 (k=12), ... - M. F. Hasler, Nov 04 2012
The elements of the inverse matrix are apparently T^(-1)(n,k) = (-1)^n*A157785(n,k). - R. J. Mathar, Mar 12 2013
Fu et al. give two combinatorial interpretations of the (unsigned) q-binomial coefficients when q is a negative integer. - Peter Bala, Nov 02 2017

Examples

			From _Roger L. Bagula_, Feb 10 2009: (Start)
  1;
  1,   1;
  1,  -1,     1;
  1,   3,     3,      1;
  1,  -5,    15,     -5,      1;
  1,  11,    55,     55,     11,      1;
  1, -21,   231,   -385,    231,    -21,      1;
  1,  43,   903,   3311,   3311,    903,     43,     1;
  1, -85,  3655, -25585,  56287, -25585,   3655,   -85,   1;
  1, 171, 14535, 208335, 875007, 875007, 208335, 14535, 171, 1;  (End)
		

Crossrefs

Cf. A015152 (row sums).
Cf. A022166 (q=2), A022167 (q=3), A022168 (q=4), A022169 (q=5), A022170 (q=6), A022171 (q=7), A022172 (q=8), A022173 (q=9), A022174 (q=10), A022175 (q=11), A022176 (q=12), A022177 (q=13), A022178 (q=14), A022179 (q=15), A022180 (q=16), A022181 (q=17), A022182 (q=18), A022183 (q=19), A022184 (q=20), A022185 (q=21), A022186 (q=22), A022187 (q=23), A022188 (q=24).
Analogous triangles for other q: A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15).

Programs

  • Magma
    qBinomial:= func< n,k,q | k eq 0 select 1 else (&*[(1-q^(n-j+1))/(1-q^j): j in [1..k]]) >;
    [qBinomial(n,k,-2): k in [0..n], n in [0..10]]; // A015109 // G. C. Greubel, Nov 30 2021
    
  • Maple
    A015109 := proc(n, k)
       mul( ((-2)^(1+n-i)-1)/((-2)^i-1) ,i=1..k) ;
    end proc: # R. J. Mathar, Mar 12 2013
  • Mathematica
    T[n_, k_, q_]:= Product[(1 - q^(n-j+1))/(1 - q^j), {j, k}];
    Table[T[n,k,-2], {n,0,10}, {k,0,n}]//Flatten (* Roger L. Bagula, Feb 10 2009 *)(* modified by G. C. Greubel, Nov 30 2021 *)
    Table[QBinomial[n, k, -2], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, Apr 09 2016 *)
  • PARI
    T015109(n, k, q=-2)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) \\ M. F. Hasler, Nov 04 2012
    
  • Sage
    flatten([[q_binomial(n,k,-2) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Nov 30 2021

Formula

T(n, k) = q-binomial(n, k, -2).
T(n, k, q) = Product_{j=1..k} ( (1 - q^(n-j+1))/(1 - q^j) ), for q = -2. - Roger L. Bagula, Feb 10 2009

Extensions

Edited by M. F. Hasler, Nov 04 2012

A084175 Jacobsthal oblong numbers.

Original entry on oeis.org

0, 1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575, 244335800775, 977343902151, 3909374210503, 15637499638215, 62549992960455
Offset: 0

Views

Author

Paul Barry, May 18 2003

Keywords

Comments

Inverse binomial transform is A001019 doubled up.
Binomial transform is A084177.
Partial sums of A003683.

Crossrefs

Except for initial terms, same as A015249 and A084152.

Programs

Formula

a(n) = A001045(n)*A001045(n+1).
a(n) = (2*4^n - (-2)^n - 1)/9;
a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3), a(0)=0, a(1)=1, a(2)=3.
G.f.: x/((1+2*x)*(1-x)*(1-4*x)).
E.g.f.: (2*exp(4*x) - exp(x) - exp(-2*x))/9.
a(n+1) - 4*a(n) = 1, -1, 3, -5, 11, ... = A001045(n+1) signed. - Paul Curtz, May 19 2008
a(n) = round(2^n/3) * round(2^(n+1)/3). - Gary Detlefs, Feb 10 2010
From Peter Bala, Mar 30 2015: (Start)
The shifted o.g.f. A(x) := 1/( (1 + 2*x)*(1 - x)*(1 - 4*x) ) = 1/(1 - 3*x - 6*x^2 + 8*x^3). Hence A(x) == 1/(1 - 3*x + 3*x^2 - x^3) (mod 9) == 1/(1 - x)^3 (mod 9). It follows by Theorem 1 of Heninger et al. that (A(x))^(1/3) = 1 + x + 4*x^2 + 10*x^3 + ... has integral coefficients.
Sum_{n >= 0} a(n+1)*x^n = exp( Sum_{n >= 1} J(3*n)/J(n)*x^n/n ), where J(n) = A001045(n) are the Jacobsthal numbers. Cf. A001656, A099930. (End)

A015265 Gaussian binomial coefficient [ n,2 ] for q = -13.

Original entry on oeis.org

1, 157, 26690, 4508570, 761974851, 128773405047, 21762709934980, 3677897920745140, 621564749363392901, 105044442632566365137, 17752510805031727164870, 3000174326048697741925710, 507029461102251552321630151, 85687978926280231101185088427
Offset: 2

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,2] for q=-2,...,-12: A015249, A015251, A015253, A015255, A015257 A015258, A015259, A015260, A015261, A015262, A015264.
Cf. Gaussian binomial coefficients [n,r] for q=-13: A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    I:=[1,157,26690]; [n le 3 select I[n] else 157*Self(n-1)+2041*Self(n-2)-2197*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 28 2012
    
  • Mathematica
    Table[QBinomial[n, 2, -13], {n, 2, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
  • PARI
    A015265(n,q=-13)=(1-q^n)*(q^(n-1)-1)/2352 \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,2,-13) for n in range(2,14)] # Zerinvary Lajos, May 27 2009
    

Formula

G.f.: x^2/((1-x)*(1+13*x)*(1-169*x)). - Ralf Stephan, Apr 01 2004
a(2) = 1, a(3) = 157, a(4) = 26690, a(n) = 157*a(n-1) + 2041*a(n-2) - 2197*a(n-3). - Vincenzo Librandi, Oct 28 2012
a(n) = (1/2352)*( (1 - (-13)^n)*((-13)^(n-1) - 1) ). - M. F. Hasler, Nov 03 2012

A084152 Exponential self-convolution of Jacobsthal numbers (divided by 2).

Original entry on oeis.org

0, 0, 1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575, 244335800775, 977343902151, 3909374210503, 15637499638215, 62549992960455
Offset: 0

Views

Author

Paul Barry, May 16 2003

Keywords

Crossrefs

Except for initial terms, same as A015249 and A084175.

Programs

Formula

a(n) = (4^n - 2 + (-2)^n)/18.
G.f.: x^2/((1-x)*(1+2*x)*(1-4*x)).
a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3).
E.g.f.: (exp(2*x) - exp(-x))^2/18 = (exp(4*x) - 2*exp(x) + exp(-x))/18.
Binomial transform of 0, 0, 1, 0, 9, 0, 81, ... .
a(n) = A001045(n)*A078008(n)/2.
a(n) = floor(2^n/3)ceiling(2^n/3)/2. - Paul Barry, Apr 28 2004

A249993 Expansion of 1/((1+x)*(1+2*x)*(1-4*x)).

Original entry on oeis.org

1, 1, 11, 29, 147, 525, 2227, 8653, 35123, 139469, 559923, 2235597, 8950579, 35785933, 143176499, 572640461, 2290692915, 9162509517, 36650562355, 146601200845, 586406900531, 2345623407821, 9382502019891, 37529991302349, 150119998763827, 600479927946445
Offset: 0

Views

Author

Alex Ratushnyak, Dec 27 2014

Keywords

Crossrefs

Cf. A249992.
Cf. A006095, A171477 for g.f. 1/((1-x)*(1-2*x)*(1-4*x)).
Cf. A015249, A084152, A084175 for g.f. 1/((1-x)*(1+2*x)*(1-4*x)).
Cf. A109765 for g.f. 1/((1+x)*(1-2*x)*(1-4*x)).

Programs

  • Magma
    [(2^(2*n+3) +(-1)^n*(5*2^(n+1)-3))/15: n in [0..40]]; // G. C. Greubel, Oct 10 2022
    
  • Mathematica
    CoefficientList[Series[1/((1+x)(1+2x)(1-4x)),{x,0,30}],x] (* or *) LinearRecurrence[{1,10,8},{1,1,11},30] (* Harvey P. Dale, Dec 13 2018 *)
  • PARI
    Vec(1/((1+x)*(1+2*x)*(1-4*x)) + O(x^40)) \\ Michel Marcus, Dec 28 2014
    
  • SageMath
    [(2^(2*n+3) +(-1)^n*(5*2^(n+1)-3))/15 for n in range(41)] # G. C. Greubel, Oct 10 2022

Formula

G.f.: 1/((1+x)*(1+2*x)*(1-4*x)).
a(n) = ( 2^(3+2*n) + (5*2^(1+n) - 3)*(-1)^n )/15. Colin Barker, Dec 28 2014
a(n) = a(n-1) + 10*a(n-2) + 8*a(n-3). - Colin Barker, Dec 28 2014
E.g.f.: (1/15)*(10*exp(-2*x) - 3*exp(-x) + 8*exp(4*x)). - G. C. Greubel, Oct 10 2022
Showing 1-5 of 5 results.