cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084213 Binomial transform of A081250.

Original entry on oeis.org

1, 4, 18, 76, 312, 1264, 5088, 20416, 81792, 327424, 1310208, 5241856, 20969472, 83881984, 335536128, 1342160896, 5368676352, 21474770944, 85899214848, 343597121536, 1374389010432, 5497557090304, 21990230458368, 87960926027776
Offset: 0

Views

Author

Paul Barry, May 19 2003

Keywords

Comments

When 5*2^n - 1 is prime, that is, n is in A001770, then a(n+1) is in A136539. - Farideh Firoozbakht and M. F. Hasler, Nov 03 2012

Programs

  • Magma
    [5*4^n/4-2^n/2+0^n/4: n in [0..30]]; // Vincenzo Librandi, Jun 15 2011
    
  • Maple
    seq(coeff(series((1-2*x+2*x^2)/((1-2*x)*(1-4*x)),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 09 2018
  • Mathematica
    Table[If[n==0, 1, 2^(n-2)*(5*2^n - 2)], {n,0,30}] (* G. C. Greubel, Oct 08 2018 *)
    CoefficientList[Series[(1 - 2*x + 2*x^2)/((1-2*x)*(1-4*x)), {x, 0, 50}], x] (* or *)
    CoefficientList[Series[(5*Exp[4*x] - 2*Exp[2*x] + 1)/4, {x, 0, 50}], x]*Table[k!, {k, 0, 50}] (* Stefano Spezia, Oct 11 2018 *)
  • PARI
    vector(30, n, n--; (5*4^n - 2^(n+1) + 0^n)/4) \\ G. C. Greubel, Oct 08 2018

Formula

a(n) = (5*4^n - 2^(n+1) + 0^n)/4.
G.f.: (1 - 2*x + 2*x^2)/((1-2*x)*(1-4*x)).
E.g.f.: (5*exp(4*x) - 2*exp(2*x) + 1)/4.
a(n+1) = 2^n*(5*2^n - 1) for all n >= 0. - M. F. Hasler, Nov 03 2012