cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084220 a(n) = sigma_6(n^2)/sigma_3(n^2).

Original entry on oeis.org

1, 57, 703, 3641, 15501, 40071, 117307, 233017, 512461, 883557, 1770231, 2559623, 4824613, 6686499, 10897203, 14913081, 24132657, 29210277, 47039023, 56439141, 82466821, 100903167, 148023723, 163810951, 242203001, 275002941, 373584043
Offset: 1

Views

Author

Benoit Cloitre, Jun 21 2003

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a:=n->sigma[6](n^2)/sigma[3](n^2): seq(a(n),n=1..30); # Muniru A Asiru, Oct 09 2018
  • Mathematica
    Table[DivisorSigma[6,n^2]/DivisorSigma[3,n^2],{n,30}] (* Harvey P. Dale, May 02 2012 *)
    f[p_, e_] := (p^(6*e + 3) + 1)/(p^3 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    a(n)=sumdiv(n^2,d,d^6)/sumdiv(n^2,d,d^3)
    
  • PARI
    a(n) = sigma(n^2, 6)/sigma(n^2, 3); \\ Michel Marcus, Oct 09 2018

Formula

Multiplicative with a(p^e) = (p^(6*e + 3) + 1)/(p^3 + 1). - Amiram Eldar, Sep 13 2020
Sum_{k>=1} 1/a(k) = 1.019347996519986873084210965032965644185467985307512751244884310846924559959... - Vaclav Kotesovec, Sep 24 2020
Sum_{k=1..n} a(k) ~ c * n^7, where c = 90*zeta(7)/(7*Pi^4) = 0.133093... . - Amiram Eldar, Oct 30 2022
From Seiichi Manyama, May 18 2024: (Start)
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} ( n/gcd(x_1, x_2, x_3, n) )^3.
a(n) = Sum_{d|n} mu(n/d) * (n/d)^3 * sigma_6(d). (End)