A247734 Decimal expansion of the coefficient c appearing in the asymptotic evaluation of the number of prime additive compositions of n as c*(1/xi)^n, where xi is A084256.
3, 0, 3, 6, 5, 5, 2, 6, 3, 3, 9, 5, 2, 5, 4, 5, 4, 8, 8, 5, 4, 2, 0, 5, 7, 6, 7, 8, 9, 0, 2, 0, 6, 5, 6, 3, 2, 7, 3, 5, 0, 3, 8, 3, 4, 5, 9, 5, 1, 3, 5, 9, 3, 2, 7, 9, 2, 2, 0, 0, 9, 3, 8, 3, 7, 1, 6, 3, 7, 0, 5, 2, 0, 9, 1, 2, 6, 9, 4, 9, 0, 9, 5, 3, 4, 6, 3, 7, 1, 0, 9, 9, 1, 8, 5, 6, 2, 0, 6, 8, 9, 6
Offset: 0
Examples
0.3036552633952545488542057678902065632735... 1/xi = 1.4762287836208969657929439948482332947971...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5. Kalmár’s Composition Constant, p. 293.
Crossrefs
Cf. A084256 (xi).
Programs
-
Mathematica
nMax = 200; digits = 102; f[x_] := Sum[x^Prime[n], {n, 1, nMax}]; fp[x_] := Sum[Prime[n]*x^(Prime[n] - 1), {n, 1, nMax}]; xi = x /. FindRoot[f[x] == 1, {x, 2/3}, WorkingPrecision -> digits+5]; c = 1/(xi*fp[xi]); RealDigits[c, 10, digits] // First
Formula
c = 1/(xi*f'(xi)), where f(x) is the sum over primes x^2 + x^3 + x^5 + x^7 + ..., xi (A084256) being the positive solution of f(x) = 1.
Comments