cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A247734 Decimal expansion of the coefficient c appearing in the asymptotic evaluation of the number of prime additive compositions of n as c*(1/xi)^n, where xi is A084256.

Original entry on oeis.org

3, 0, 3, 6, 5, 5, 2, 6, 3, 3, 9, 5, 2, 5, 4, 5, 4, 8, 8, 5, 4, 2, 0, 5, 7, 6, 7, 8, 9, 0, 2, 0, 6, 5, 6, 3, 2, 7, 3, 5, 0, 3, 8, 3, 4, 5, 9, 5, 1, 3, 5, 9, 3, 2, 7, 9, 2, 2, 0, 0, 9, 3, 8, 3, 7, 1, 6, 3, 7, 0, 5, 2, 0, 9, 1, 2, 6, 9, 4, 9, 0, 9, 5, 3, 4, 6, 3, 7, 1, 0, 9, 9, 1, 8, 5, 6, 2, 0, 6, 8, 9, 6
Offset: 0

Views

Author

Jean-François Alcover, Sep 23 2014

Keywords

Examples

			0.3036552633952545488542057678902065632735...
1/xi = 1.4762287836208969657929439948482332947971...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5. Kalmár’s Composition Constant, p. 293.

Crossrefs

Cf. A084256 (xi).

Programs

  • Mathematica
    nMax = 200; digits = 102; f[x_] := Sum[x^Prime[n], {n, 1, nMax}]; fp[x_] := Sum[Prime[n]*x^(Prime[n] - 1), {n, 1, nMax}]; xi = x /. FindRoot[f[x] == 1, {x, 2/3}, WorkingPrecision -> digits+5]; c = 1/(xi*fp[xi]); RealDigits[c, 10, digits] // First

Formula

c = 1/(xi*f'(xi)), where f(x) is the sum over primes x^2 + x^3 + x^5 + x^7 + ..., xi (A084256) being the positive solution of f(x) = 1.

A084255 Decimal expansion of continued fraction 1/(2+1/(3+1/(5+1/(7+1/(11+...))))).

Original entry on oeis.org

4, 3, 2, 3, 3, 2, 0, 8, 7, 1, 8, 5, 9, 0, 2, 8, 6, 8, 9, 0, 9, 2, 5, 3, 7, 9, 3, 2, 4, 1, 9, 9, 9, 9, 6, 3, 7, 0, 5, 1, 1, 0, 8, 9, 6, 8, 7, 7, 6, 5, 1, 3, 1, 0, 3, 2, 8, 1, 5, 2, 0, 6, 7, 1, 5, 8, 5, 5, 3, 9, 0, 5, 1, 1, 5, 2, 9, 5, 8, 8, 6, 6, 4, 2, 4, 7, 7, 3, 0, 2, 3, 4, 6, 7, 5, 3, 0, 7, 3, 1, 2, 9
Offset: 0

Views

Author

Frank Ellermann, May 23 2003

Keywords

Comments

Decimal expansion of the constant whose continued fraction form is the sequence of all the prime numbers.

Examples

			0.4323320871859028689...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/FromContinuedFraction@ Prime@ Range@ 34, 10, 111] (* or *)
    RealDigits[ Fold[1/(#1 + #2) &, 1, Reverse@ Prime@ Range@35], 10, 111] (* Robert G. Wilson v, Dec 26 2016 *)

Formula

A084257 Decimal expansion of -x where x^2/2! + x^3/3! + x^5/5! + x^7/7! + x^11/11! + x^13/13! + ... = 0.

Original entry on oeis.org

2, 3, 0, 7, 5, 0, 5, 2, 9, 3, 7, 5, 0, 3, 8, 2, 0, 3, 5, 2, 9, 0, 4, 7, 0, 0, 3, 2, 4, 0, 4, 9, 5, 1, 4, 4, 4, 4, 1, 9, 8, 8, 4, 3, 2, 8, 6, 6, 8, 1, 5, 0, 8, 8, 9, 2, 9, 3, 6, 1, 5, 3, 0, 2, 6, 9, 6, 8, 1, 9, 6, 9, 5, 7, 9, 5, 6, 8, 3, 9, 2, 3, 3, 2, 1, 4, 4, 5, 2, 7, 1, 6, 1, 5, 1, 1, 4, 6, 4
Offset: 1

Views

Author

Frank Ellermann, May 23 2003

Keywords

Comments

This is the only nonzero real solution.

Examples

			-2.307505293750382035...
		

Crossrefs

A078465 Primonacci numbers: a(n)=a(n-2)+a(n-3)+a(n-5)+a(n-7)+a(n-11)+...+a(n-p(k))+... until n <= p(k), where p(k) is the k-th prime. a(1)=a(2)=1.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 8, 12, 16, 26, 36, 55, 81, 118, 177, 257, 384, 564, 833, 1233, 1813, 2685, 3956, 5845, 8629, 12731, 18807, 27746, 40976, 60481, 89282, 131816, 194562, 287253, 424018, 625968, 924077
Offset: 1

Views

Author

Miklos Kristof, Jan 02 2003

Keywords

Comments

a(n)/a(n-1) -> 1.476229...=1/x, where x satisfies the Sum x^p(n)=1 equation, i.e. x^2+x^3+x^5+x^7+x^11+... =1. (What constant is it?)

Examples

			a(12) = 36 = a(12-2)+a(12-3)+a(12-5)+a(12-7)+a(12-11) = a(10)+a(9)+a(7)+a(5)+a(1) = 16+12+5+2+1 = 36.
		

Crossrefs

Cf. A078974 (the constant 1.47622...), A084256 (the constant 1/1.47622...)

Programs

  • Haskell
    import Data.List (genericIndex)
    a078465 n = a078465_list `genericIndex` (n-1)
    a078465_list = 1 : 1 : f 3 where
       f x = (sum $ map (a078465 . (x -)) $
             takeWhile (< x) a000040_list) : f (x + 1)
    -- Reinhard Zumkeller, Jul 20 2012
  • Mathematica
    a[1] = a[2] = 1; a[n_] := a[n] = Sum[a[n - Prime[k]], {k, 1, PrimePi[n]}]; Table[a[n], {n, 1, 38}] (* Jean-François Alcover, Mar 22 2011 *)

Extensions

Name corrected by Sean A. Irvine, Jul 01 2025

A078974 Decimal expansion of constant C such that Sum_{k>=1} 1/C^p(k) = 1 where p(k) is the k-th prime.

Original entry on oeis.org

1, 4, 7, 6, 2, 2, 8, 7, 8, 3, 6, 2, 0, 8, 9, 6, 9, 6, 5, 7, 9, 2, 9, 4, 3, 9, 9, 4, 8, 4, 8, 2, 3, 3, 2, 9, 4, 7, 9, 7, 1, 2, 2, 7, 6, 0, 8, 5, 0, 5, 9, 3, 2, 7, 0, 7, 5, 5, 1, 9, 0, 0, 2, 0, 1, 7, 6, 8, 3, 2, 2, 8, 0, 7, 4, 1, 8, 2, 4, 6, 5, 6, 6, 4, 8, 4, 1, 1, 3, 1, 5, 6, 1, 9, 2, 5, 9, 0, 2, 0, 8, 6, 7, 5, 1
Offset: 1

Views

Author

Benoit Cloitre, Jan 12 2003

Keywords

Examples

			1.47622878362089696579294399484823329479712276085059327075519...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5 Kalmar's Composition Constant, p. 293.

Crossrefs

Programs

  • Mathematica
    RealDigits[x/.FindRoot[Sum[1/x^Prime[k], {k,1,120}] == 1, {x, 1.476}, WorkingPrecision -> 120]][[1, 1 ;; 105]] (* Jean-François Alcover, Mar 22 2011 *)

Formula

Equals 1/A084256.

A272037 Decimal expansion of x such that x + x^4 + x^9 + x^16 + x^25 + x^36 + ... = 1.

Original entry on oeis.org

7, 0, 5, 3, 4, 6, 6, 8, 1, 3, 7, 9, 8, 0, 6, 9, 8, 9, 6, 3, 6, 3, 7, 9, 7, 0, 6, 3, 9, 3, 9, 4, 1, 5, 0, 5, 2, 6, 0, 0, 7, 8, 1, 6, 1, 5, 1, 2, 2, 9, 2, 8, 7, 0, 5, 1, 7, 4, 2, 6, 7, 8, 1, 6, 2, 7, 3, 8, 1, 2, 3, 3, 5, 0, 6, 2, 0, 9, 5, 1, 4, 6, 2, 1, 3, 7, 4, 7, 1, 9, 4, 8, 3, 8, 8, 1, 2, 2, 1, 0
Offset: 0

Views

Author

Jean-François Alcover, Apr 18 2016

Keywords

Comments

This constant is an analog of A084256 where primes are replaced with squares.

Examples

			0.705346681379806989636379706393941505260078161512292870517426781...
		

Crossrefs

Programs

  • Mathematica
    FindRoot[Sum[x^n^2, {n, 1, 100}] == 1, {x, 7/10}, WorkingPrecision -> 100][[1, 2]] // RealDigits // First
    (* or *)
    FindRoot[EllipticTheta[3, 0, x] == 3, {x, 7/10}, WorkingPrecision -> 100][[1, 2]] // RealDigits // First
  • PARI
    solve(x=.7,.8,suminf(y=1,x^y^2)-1) \\ Charles R Greathouse IV, Apr 25 2016

Formula

Solution to theta_3(0,x) = 3, where theta_3 is the 3rd elliptic theta function.

Extensions

a(99) corrected by Sean A. Irvine, Jul 24 2025
Showing 1-6 of 6 results.