cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A076576 Erroneous version of A084255.

Original entry on oeis.org

4, 3, 2, 3, 3, 2, 9, 8, 7, 1, 8, 5, 9
Offset: 0

Views

Author

Keywords

A064442 Decimal expansion of number with continued fraction expansion 2, 3, 5, 7, 11, 13, 17, 19, ... = 2.3130367364335829063839516 ...

Original entry on oeis.org

2, 3, 1, 3, 0, 3, 6, 7, 3, 6, 4, 3, 3, 5, 8, 2, 9, 0, 6, 3, 8, 3, 9, 5, 1, 6, 0, 2, 6, 4, 1, 7, 8, 2, 4, 7, 6, 3, 9, 6, 6, 8, 9, 7, 7, 1, 8, 0, 3, 2, 5, 6, 3, 4, 0, 2, 1, 0, 1, 2, 4, 4, 4, 2, 1, 4, 4, 5, 6, 4, 7, 3, 1, 7, 7, 6, 2, 7, 2, 2, 4, 3, 6, 9, 5, 3, 2, 2, 0, 1, 7, 2, 3, 8, 3, 2, 8, 1, 7, 4, 5, 3, 0, 1, 5, 8, 2
Offset: 1

Views

Author

Robert G. Wilson v, Oct 01 2001

Keywords

Comments

Continued fraction expansion of the prime numbers. - Harvey P. Dale, Sep 25 2012

Examples

			2.313036736433582906383951602641782476396689771803256340210124442144564731776...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ FromContinuedFraction[ Table[ Prime[n], {n, 1, 100} ]], 100]] [[1]]
    RealDigits[FromContinuedFraction[Prime[Range[200]]],10,120][[1]] (* Harvey P. Dale, Sep 06 2021 *)

Formula

From Peter Bala, Nov 26 2019: (Start)
Denoting the constant by c we have the related simple continued fraction expansions (prime(n) denotes the n-th prime number):
2*c = [4; 1, 1, 1, 2, 14, 5, 1, 1, 6, 34, 9, 1, 1, 11, 58, 15, 1, 1, 18, 82, 21, ..., 1, 1, (prime(3*n) - 1)/2, 2*prime(3*n+1), (prime(3*n+2) - 1)/2, ...];
(1/2)*c = [1; 6, 2, 1, 1, 3, 22, 6, 1, 1, 8, 38, 11, 1, 1, 14, 62, 18, 1, 1, 20, 86, 23, ..., 1, 1, (prime(3*n+1) - 1)/2, 2*prime(3*n+2), (prime(3*n+3) - 1)/2, ...];
(c + 1)/(c - 1) = [2; 1, 1, 10, 3, 1, 1, 5, 26, 8, 1, 1, 9, 46, 14, 1, 1, 15, 74, 20, ..., 1, 1, (prime(3*n+2) - 1)/2, 2*prime(3*n+3), (prime(3*n+4) - 1)/2, ...]. (End)

A084256 Decimal expansion of x such that x^2 + x^3 + x^5 + x^7 + x^11 + x^13 + x^17 + ... = 1.

Original entry on oeis.org

6, 7, 7, 4, 0, 1, 7, 7, 6, 1, 3, 0, 6, 6, 0, 4, 2, 7, 9, 7, 6, 3, 0, 6, 3, 1, 6, 4, 3, 1, 9, 6, 7, 1, 9, 1, 9, 9, 2, 5, 2, 1, 4, 1, 2, 8, 4, 1, 9, 5, 4, 8, 9, 3, 3, 0, 7, 1, 4, 5, 0, 6, 8, 3, 4, 6, 7, 2, 7, 2, 3, 2, 3, 2, 4, 3, 2, 0, 2, 2, 8, 1, 0, 9, 0, 5, 2, 2, 7, 7, 2, 8, 2, 0, 9, 9, 0, 0, 5, 9
Offset: 0

Views

Author

Frank Ellermann, May 23 2003

Keywords

Comments

A constant appearing in the asymptotic formula for the number of prime additive compositions. See Finch's article.

Examples

			0.67740177613066042797630631643196719199252141284...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x/.FindRoot[1==Sum[x^Prime[n], {n, 150}], {x, {0, 1}}, WorkingPrecision->100]][[1]] (* T. D. Noe, Oct 14 2003 *)

Extensions

More terms from T. D. Noe, Oct 14 2003

A152062 Decimal expansion of number with continued fraction expansion 1, 2, 3, 5, 7, 11, 13, 17, 19, ...

Original entry on oeis.org

1, 4, 3, 2, 3, 3, 2, 0, 8, 7, 1, 8, 5, 9, 0, 2, 8, 6, 8, 9, 0, 9, 2, 5, 3, 7, 9, 3, 2, 4, 1, 9, 9, 9, 9, 6, 3, 7, 0, 5, 1, 1, 0, 8, 9, 6, 8, 7, 7, 6, 5, 1, 3, 1, 0, 3, 2, 8, 1, 5, 2, 0, 6, 7, 1, 5, 8, 5, 5, 3, 9, 0, 5, 1, 1, 5, 2, 9, 5, 8, 8, 6, 6, 4, 2, 4, 7, 7, 3, 0, 2, 3, 4, 6, 7, 5, 3, 0, 7, 3
Offset: 1

Views

Author

Frank S. Thomas (fthomas(AT)physik.uni-wuerzburg.de), Nov 22 2008

Keywords

Examples

			1.4323320871859028689092537...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[FromContinuedFraction[Prepend[Table[Prime[n], {n, 1, 100}], 1]], 100]][[1]]

Formula

One plus A084255. [R. J. Mathar, Nov 27 2008]
Equals 1+1/(2+1/(3+1/(5+1/(7+1/(11+...))))). - Daniel Forgues, Mar 08 2016

A247847 Decimal expansion of m = (1-1/e^2)/2, one of Renyi's parking constants.

Original entry on oeis.org

4, 3, 2, 3, 3, 2, 3, 5, 8, 3, 8, 1, 6, 9, 3, 6, 5, 4, 0, 5, 3, 0, 0, 0, 2, 5, 2, 5, 1, 3, 7, 5, 7, 7, 9, 8, 2, 9, 6, 1, 8, 4, 2, 2, 7, 0, 4, 5, 2, 1, 2, 0, 5, 9, 2, 6, 5, 9, 2, 0, 5, 6, 3, 6, 7, 2, 9, 6, 3, 3, 1, 2, 9, 4, 9, 2, 5, 6, 1, 5, 5, 0, 3, 1, 4, 5, 0, 9, 3, 8, 7, 5, 4, 6, 7, 1, 4, 7, 5, 6, 2, 2, 4, 6
Offset: 0

Views

Author

Jean-François Alcover, Sep 25 2014

Keywords

Comments

Curiously, this Renyi parking constant is very close to the prime generated continued fraction A084255 (gap ~ 10^-7).

Examples

			0.432332358381693654053000252513757798296184227045212...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.3 Renyi's parking constant, p. 280.

Crossrefs

Programs

  • Mathematica
    RealDigits[(1 - 1/E^2)/2 , 10, 104] // First

Formula

Define s(n) = Sum_{k = 0..n} 2^k/k!. Then (1 - 1/e^2)/2 = Sum_{n >= 0} 2^n/( (n+1)!*s(n)*s(n+1) ). Cf. A073333. - Peter Bala, Oct 23 2023

A302937 Decimal expansion of continued fraction 1/(4+1/(6+1/(8+1/(9+1/(10+...))))).

Original entry on oeis.org

2, 4, 0, 1, 9, 3, 4, 7, 2, 7, 1, 3, 5, 4, 0, 4, 0, 2, 9, 0, 7, 6, 5, 9, 9, 0, 1, 6, 5, 3, 6, 1, 9, 4, 3, 8, 8, 0, 4, 8, 6, 9, 9, 0, 4, 0, 2, 1, 9, 5, 4, 7, 6, 0, 5, 7, 1, 4, 1, 4, 2, 4, 6, 1, 1, 2, 5, 6, 7, 5, 3, 0, 8, 5, 7, 8, 9, 9, 3, 9, 6, 7, 0, 7, 4, 4, 3, 5, 3, 6, 8, 9, 7, 2, 0, 5, 4, 0, 4, 0, 4, 9, 9, 4, 4
Offset: 0

Views

Author

Paolo P. Lava, Apr 16 2018

Keywords

Comments

Decimal expansion of the constant whose continued fraction form is the sequence of all the composite numbers.

Examples

			0.24019347271354040290765990165361943880486990402195476057141424611256753...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,n; a:=0; for n from q by -1 to 4 do if not isprime(n) then a:=1/(a+n); fi; od; print(evalf(a,120)); end: P(10^4);
  • Mathematica
    RealDigits[ Fold[1/(#1 + #2) &, 1, Reverse[ Composite@# & /@ Range@40]], 10, 111][[1]] (* Robert G. Wilson v, Apr 29 2018 *)

A191608 Decimal expansion of number whose continued fraction is based on noncomposite numbers.

Original entry on oeis.org

6, 9, 8, 1, 6, 2, 1, 1, 5, 4, 3, 8, 3, 9, 3, 9, 0, 3, 5, 3, 3, 5, 2, 3, 8, 8, 7, 5, 0, 8, 3, 4, 6, 9, 7, 5, 9, 2, 9, 5, 9, 9, 1, 0, 9, 1, 2, 4, 1, 8, 7, 4, 4, 7, 5, 3, 3, 8, 9, 2, 4, 6, 2, 8, 4, 7, 2, 7, 9, 7, 2, 5, 3, 9, 7, 5, 0, 7, 9, 4, 7, 0, 4, 9, 6, 7, 3, 7, 9, 9, 7, 4, 1, 8, 9, 8, 9, 7, 0, 3, 1, 6, 8, 5, 1
Offset: 0

Views

Author

Fabrice Auzanneau, Jun 08 2011

Keywords

Examples

			0.6981621154383939035335... = 1/(1+1/(2+1/(3+1/(5+1/(7+1/(11+1/(13+1/...))))))).
		

Formula

Equals 1/(1+A084255). - Nathaniel Johnston, Jun 08 2011
Equals 1/A152062. - R. J. Mathar, Jun 17 2011

Extensions

Corrected and extended by Nathaniel Johnston, Jun 08 2011

A328726 Decimal expansion of the number with continued fraction expansion 4, 6, 8, 9, 10, 12, 14, 15, ... (A002808 = composite numbers).

Original entry on oeis.org

4, 1, 6, 3, 3, 1, 0, 4, 7, 0, 9, 4, 1, 1, 4, 9, 3, 4, 6, 2, 0, 2, 7, 6, 8, 5, 9, 3, 8, 1, 3, 0, 3, 9, 5, 0, 7, 0, 4, 3, 9, 5, 8, 0, 6, 2, 3, 4, 3, 1, 6, 1, 8, 0, 8, 4, 0, 2, 1, 9, 6, 6, 2, 3, 2, 2, 5, 8, 1, 5, 7, 1, 6, 5, 7, 7, 3, 0, 8, 4, 9, 0, 8, 9, 6, 7, 6, 8, 0, 1, 4, 4, 6, 3, 8, 8, 6, 7, 5, 1, 1, 6, 3, 9, 2
Offset: 1

Views

Author

Keywords

Examples

			4.163310470941149346202768593813039507043958...
		

Crossrefs

Formula

Equals 1/A302937. - Alois P. Heinz, Nov 13 2019

Extensions

More digits from Alois P. Heinz, Nov 13 2019

A330867 Decimal expansion of the continued fraction 1/(1 + 2/(2 + 3/(3 + 5/(5 + 7/(7 + ... + prime(k)/(prime(k) + ...)))))).

Original entry on oeis.org

5, 8, 1, 5, 2, 5, 0, 0, 4, 5, 9, 2, 2, 1, 4, 6, 5, 4, 3, 9, 9, 1, 5, 1, 7, 0, 4, 8, 1, 8, 0, 0, 4, 4, 6, 1, 9, 5, 5, 8, 6, 7, 5, 4, 0, 4, 9, 7, 2, 4, 6, 4, 4, 1, 1, 0, 0, 4, 7, 9, 4, 2, 3, 2, 6, 0, 9, 6, 7, 4, 6, 4, 5, 4, 1, 9, 6, 8, 6, 1, 4, 1, 2, 0, 2, 7, 6, 1, 4, 5, 2, 4, 3, 4, 0, 5, 4, 6, 9, 3
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 28 2020

Keywords

Examples

			0.58152500459221465439915170481800446195586754...
		

Crossrefs

Showing 1-9 of 9 results.