cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A141283 Record values for number of divisors from A084260.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 13, 15, 16, 19, 20, 23, 24, 32, 37, 42, 51, 52, 59, 66, 74, 79, 88, 89, 94, 98, 129, 133, 154, 172, 228
Offset: 1

Views

Author

Ray Chandler, Jun 21 2008

Keywords

Crossrefs

Formula

a(n) = A076982(A084260(n)).

Extensions

a(28)-a(33) from Amiram Eldar, Jun 23 2023

A076983 Smallest triangular number divisible by exactly n triangular numbers.

Original entry on oeis.org

1, 3, 6, 36, 105, 120, 780, 210, 990, 630, 19110, 7140, 5460, 176715, 25200, 73920, 103740, 145530, 97020, 157080, 4744740, 2386020, 1185030, 2031120, 3483480, 13857480, 8817900, 118572300, 88438350, 39209940, 286071240, 2162160, 472612140, 953993040, 668883600
Offset: 1

Views

Author

Amarnath Murthy, Oct 25 2002

Keywords

Comments

2*a(n) = smallest oblong number with exactly n oblong divisors. - Ray Chandler, Jun 29 2008

Examples

			a(5) = 105 has 5 divisors which are triangular numbers (1, 3, 15, 21 and 105).
		

Crossrefs

Extensions

More terms from Lior Manor, Nov 06 2002
More terms from Ray Chandler, Jun 29 2008

A076982 Number of triangular numbers that divide the n-th triangular number.

Original entry on oeis.org

1, 2, 3, 2, 3, 3, 2, 4, 4, 2, 4, 4, 2, 5, 6, 2, 3, 3, 3, 8, 4, 2, 4, 6, 2, 3, 5, 2, 4, 4, 2, 5, 3, 2, 10, 4, 2, 3, 7, 3, 4, 4, 2, 9, 5, 2, 4, 6, 2, 4, 5, 2, 3, 6, 5, 6, 3, 2, 6, 6, 2, 4, 7, 3, 5, 3, 2, 4, 6, 2, 5, 5, 2, 4, 7, 2, 6, 3, 3, 9, 3, 2, 5, 10, 2, 3, 5, 2, 5, 8, 3, 4, 3, 2, 8, 4, 2, 5, 10, 3, 3, 3
Offset: 1

Views

Author

Amarnath Murthy, Oct 25 2002

Keywords

Comments

Also number of oblong numbers that divide the n-th oblong number.
Sequence A137281 contains the indices of primitive triangular numbers; those that have no triangular divisors other than 1 and itself. - T. D. Noe, Apr 12 2011

Crossrefs

Programs

  • Maple
    a[1] := 1:for i from 1 to 200 do s := 0:for j from 1 to i do if((i*(i+1)/2 mod j*(j+1)/2)=0) then s := s+1:fi:od:a[i] := s:od:seq(a[l],l=1..200);
  • Mathematica
    nn = 100; tri = Table[n*(n+1)/2, {n, nn}]; Table[Count[Mod[tri[[n]], Take[tri, n]], 0], {n, nn}] (* T. D. Noe, Apr 12 2011 *)
  • PARI
    a(n) = sumdiv(n*(n+1)/2, d, ispolygonal(d, 3)); \\ Michel Marcus, Mar 21 2023
  • Python
    def aupton(nn):
        tri = [i*(i+1)//2 for i in range(1, nn+1)]
        return [sum(t%t2 == 0 for t2 in tri[:j+1]) for j, t in enumerate(tri)]
    print(aupton(102)) # Michael S. Branicky, Dec 10 2021
    

Formula

a(n) = A007862(A000217(n)) = A129308(A002378(n)). - Ray Chandler, Jun 21 2008

Extensions

More terms from Lior Manor, Nov 06 2002
More terms from Sascha Kurz, Jan 26 2003

A225399 Number of nontrivial triangular numbers dividing triangular(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 0, 2, 2, 0, 2, 2, 0, 3, 4, 0, 1, 1, 1, 6, 2, 0, 2, 4, 0, 1, 3, 0, 2, 2, 0, 3, 1, 0, 8, 2, 0, 1, 5, 1, 2, 2, 0, 7, 3, 0, 2, 4, 0, 2, 3, 0, 1, 4, 3, 4, 1, 0, 4, 4, 0, 2, 5, 1, 3, 1, 0, 2, 4, 0, 3, 3, 0, 2, 5, 0, 4, 1, 1, 7, 1, 0, 3, 8, 0, 1
Offset: 0

Views

Author

Alex Ratushnyak, May 06 2013

Keywords

Comments

Number of triangular numbers t such that t divides triangular(n), and 1 < t < triangular(n).

Examples

			triangular(3) = 6 is divisible by triangular(2) = 3, so a(3) = 1.
triangular(8) = 36 is divisible by triangular(2) = 3 and triangular(3) = 6, so a(8) = 2.
		

Crossrefs

Programs

  • C
    #include 
    int main() {
      unsigned long long c, i, j, t, tn;
      for (i = tn = 0; i < (1ULL<<32); i++) {
            for (c=0, tn += i, t = j = 3; t*2 <= tn; t+=j, ++j)
                    if (tn % t == 0)  ++c;
            printf("%llu, ", c);
      }
      return 0;
    }
  • Maple
    A225399 := proc(n)
        option remember ;
        local a,tn,i;
        a := 0 ;
        tn := A000217(n) ;
        for i from 2 to n-1 do
            if modp(tn,A000217(i))=0 then
                a := a+1 ;
            end if;
        end do:
        a;
    end proc:
    seq(A225399(n),n=0..80) ; # R. J. Mathar, Jan 12 2024
  • Mathematica
    tri = Table[n (n + 1)/2, {n, 100}]; Table[cnt = 0; Do[If[Mod[tri[[n]], tri[[k]]] == 0, cnt++], {k, 2, n - 1}]; cnt, {n, 0, Length[tri]}] (* T. D. Noe, May 07 2013 *)

Formula

a(n) = A076982(n) - 2 for n > 1.

A319788 Tetrahedral numbers divisible by a record number of smaller tetrahedral numbers.

Original entry on oeis.org

1, 4, 20, 120, 560, 19600, 27720, 1521520, 7207200, 2845642800, 4170866700, 249466897680, 9117204216120, 1723262134513920, 2525472914524560, 189169152233901840, 1782424363173854400, 28708458878287188000, 15137401000857582807360, 32632841312905676442600, 647550654467707884653760
Offset: 1

Views

Author

Torlach Rush, Sep 27 2018

Keywords

Comments

For known terms > 1:
- a(n) is divisible by a square.
- a(n) is divisible by 20, n > 2.
The record numbers of tetrahedral divisors corresponding to terms a(1)-a(21) are 0, 1, 3, 4, 6, 7, 11, 16, 20, 23, 25, 32, 39, 44, 53, 57, 58, 64, 69, 72, 84.
a(18)..a(21) are divisible by 25878772920. If a(22)..a(28) are divisible by 25878772920 then they are binomial(k + 2, 3) for k in {879207614, 4118478208, 6399801198, 8921309759, 9985690350, 14992913375} having 94, 96, 98, 101, 106, 118 smaller tetrahedral divisors respectively. - David A. Corneth, Mar 22 2021

Examples

			4 is a term because it is the smallest tetrahedral number divisible by the only positive smaller tetrahedral number 1.
20 is a term because it divisible by 1,4,10, and has more divisors than each of 1,4,10, the only smaller terms.
		

Crossrefs

Subsequence of A013929.

Programs

  • PARI
    t(n) = n*(n+1)*(n+2)/6;
    f(n) = my(tn=n*(n+1)*(n+2)/6); sum(k=1, n-1, (tn % t(k)) == 0);
    lista(nn) = {my(nb = - 1, new); for (n=1, nn, new = f(n); if (new > nb, print1(t(n), ", "); nb = new););} \\ Michel Marcus, Oct 02 2018

Extensions

a(17)-a(18) from Giovanni Resta, Sep 28 2018
a(19)-a(21) from Bert Dobbelaere, Mar 21 2021
Showing 1-5 of 5 results.