cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A076982 Number of triangular numbers that divide the n-th triangular number.

Original entry on oeis.org

1, 2, 3, 2, 3, 3, 2, 4, 4, 2, 4, 4, 2, 5, 6, 2, 3, 3, 3, 8, 4, 2, 4, 6, 2, 3, 5, 2, 4, 4, 2, 5, 3, 2, 10, 4, 2, 3, 7, 3, 4, 4, 2, 9, 5, 2, 4, 6, 2, 4, 5, 2, 3, 6, 5, 6, 3, 2, 6, 6, 2, 4, 7, 3, 5, 3, 2, 4, 6, 2, 5, 5, 2, 4, 7, 2, 6, 3, 3, 9, 3, 2, 5, 10, 2, 3, 5, 2, 5, 8, 3, 4, 3, 2, 8, 4, 2, 5, 10, 3, 3, 3
Offset: 1

Views

Author

Amarnath Murthy, Oct 25 2002

Keywords

Comments

Also number of oblong numbers that divide the n-th oblong number.
Sequence A137281 contains the indices of primitive triangular numbers; those that have no triangular divisors other than 1 and itself. - T. D. Noe, Apr 12 2011

Crossrefs

Programs

  • Maple
    a[1] := 1:for i from 1 to 200 do s := 0:for j from 1 to i do if((i*(i+1)/2 mod j*(j+1)/2)=0) then s := s+1:fi:od:a[i] := s:od:seq(a[l],l=1..200);
  • Mathematica
    nn = 100; tri = Table[n*(n+1)/2, {n, nn}]; Table[Count[Mod[tri[[n]], Take[tri, n]], 0], {n, nn}] (* T. D. Noe, Apr 12 2011 *)
  • PARI
    a(n) = sumdiv(n*(n+1)/2, d, ispolygonal(d, 3)); \\ Michel Marcus, Mar 21 2023
  • Python
    def aupton(nn):
        tri = [i*(i+1)//2 for i in range(1, nn+1)]
        return [sum(t%t2 == 0 for t2 in tri[:j+1]) for j, t in enumerate(tri)]
    print(aupton(102)) # Michael S. Branicky, Dec 10 2021
    

Formula

a(n) = A007862(A000217(n)) = A129308(A002378(n)). - Ray Chandler, Jun 21 2008

Extensions

More terms from Lior Manor, Nov 06 2002
More terms from Sascha Kurz, Jan 26 2003

A084260 Triangular numbers that set a new record for number of triangular divisors.

Original entry on oeis.org

1, 3, 6, 36, 105, 120, 210, 630, 5460, 25200, 73920, 97020, 157080, 1185030, 2031120, 2162160, 17907120, 76576500, 236215980, 7534947420, 12249176940, 78091322400, 203522319000, 666365279580, 2427046221600, 3638780505360, 12112252031880, 70233049766880, 108825865948800
Offset: 1

Views

Author

Jason Earls, Jun 21 2003

Keywords

Comments

2*a(n) is oblong numbers that set a new record for number of oblong divisors. - Ray Chandler, Jun 29 2008
Corresponding record values for number of divisors are in A141283.

Crossrefs

Extensions

Extended by Ray Chandler, Jun 21 2008
a(28)-a(29) from Amiram Eldar, Jun 23 2023

A358859 a(n) is the smallest n-gonal number divisible by exactly n n-gonal numbers.

Original entry on oeis.org

6, 36, 210, 4560, 6426, 326040, 4232250, 1969110, 296676380, 4798080, 166289760, 73765692000, 712750500, 50561280, 33944067893736, 2139168754800, 4292572951800, 1414764341760, 72461756727360, 180975331456920, 1870768457500800, 5498331930000, 153698278734000
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 03 2022

Keywords

Comments

The corresponding indices of n-gonal numbers are 3, 6, 12, 48, 51, 330, 1100, 702, ...

Examples

			a(5) = 210, because 210 is a pentagonal number that has 5 pentagonal divisors {1, 5, 35, 70, 210} and this is the smallest such number.
		

Crossrefs

Programs

  • PARI
    a(n) = if(n<3, return()); for(k=1, oo, my(t=(k*(n*k - n - 2*k + 4))\2); if(sumdiv(t, d, ispolygonal(d, n)) == n, return(t))); \\ Daniel Suteu, Dec 04 2022

Extensions

a(11)-a(25) from Daniel Suteu, Dec 04 2022

A225399 Number of nontrivial triangular numbers dividing triangular(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 0, 2, 2, 0, 2, 2, 0, 3, 4, 0, 1, 1, 1, 6, 2, 0, 2, 4, 0, 1, 3, 0, 2, 2, 0, 3, 1, 0, 8, 2, 0, 1, 5, 1, 2, 2, 0, 7, 3, 0, 2, 4, 0, 2, 3, 0, 1, 4, 3, 4, 1, 0, 4, 4, 0, 2, 5, 1, 3, 1, 0, 2, 4, 0, 3, 3, 0, 2, 5, 0, 4, 1, 1, 7, 1, 0, 3, 8, 0, 1
Offset: 0

Views

Author

Alex Ratushnyak, May 06 2013

Keywords

Comments

Number of triangular numbers t such that t divides triangular(n), and 1 < t < triangular(n).

Examples

			triangular(3) = 6 is divisible by triangular(2) = 3, so a(3) = 1.
triangular(8) = 36 is divisible by triangular(2) = 3 and triangular(3) = 6, so a(8) = 2.
		

Crossrefs

Programs

  • C
    #include 
    int main() {
      unsigned long long c, i, j, t, tn;
      for (i = tn = 0; i < (1ULL<<32); i++) {
            for (c=0, tn += i, t = j = 3; t*2 <= tn; t+=j, ++j)
                    if (tn % t == 0)  ++c;
            printf("%llu, ", c);
      }
      return 0;
    }
  • Maple
    A225399 := proc(n)
        option remember ;
        local a,tn,i;
        a := 0 ;
        tn := A000217(n) ;
        for i from 2 to n-1 do
            if modp(tn,A000217(i))=0 then
                a := a+1 ;
            end if;
        end do:
        a;
    end proc:
    seq(A225399(n),n=0..80) ; # R. J. Mathar, Jan 12 2024
  • Mathematica
    tri = Table[n (n + 1)/2, {n, 100}]; Table[cnt = 0; Do[If[Mod[tri[[n]], tri[[k]]] == 0, cnt++], {k, 2, n - 1}]; cnt, {n, 0, Length[tri]}] (* T. D. Noe, May 07 2013 *)

Formula

a(n) = A076982(n) - 2 for n > 1.

A225400 First occurrence of n in A225399, or -1 if n does not appear in A225399.

Original entry on oeis.org

0, 3, 8, 14, 15, 39, 20, 44, 35, 195, 119, 104, 594, 224, 384, 455, 539, 440, 560, 3080, 2184, 1539, 2015, 2639, 5264, 4199, 15399, 13299, 8855, 23919, 2079, 30744, 43680, 36575, 14399, 5984, 58695, 113399, 47124, 107184, 12375, 78624, 98175, 73359, 111320, 242879
Offset: 0

Views

Author

Alex Ratushnyak, May 06 2013

Keywords

Comments

Index of the least triangular number t divisible by exactly n triangular numbers bigger than 1 and less than t, or -1 if there is no such t.
Conjecture: a(n) >= 0.

Crossrefs

Programs

  • C
    #include 
    #define TOP 80
    int main() {
      unsigned long long c, i, j, t, tn;
      long long f[TOP];
      memset(f, -1, sizeof(f));
      for (i = tn = 0; i < (1ULL<<32); i++) {
            for (c=0, tn += i, t = j = 3; t*2 <= tn; t+=j, ++j)
                    if (tn%t==0) ++c;
            if (c
    				
  • Mathematica
    mx = 10000; tri = Table[n (n + 1)/2, {n, mx}]; nn = 20; t = Table[0, {nn}]; found = 0; n = 0; While[n < mx && found < nn, n++; cnt = 0; Do[If[Mod[tri[[n]], tri[[k]]] == 0, cnt++], {k, 2, n - 1}]; If[cnt <= nn && t[[cnt]] == 0, t[[cnt]] = n; found++]]; Join[{0}, t] (* T. D. Noe, May 07 2013 *)

Formula

A000217(a(n)) = A076983(n+1) for n>0, if the conjecture is true and a(n) >= 0.

A342808 Smallest k such that the k-th tetrahedral number is divisible by exactly n tetrahedral numbers.

Original entry on oeis.org

1, 2, 6, 4, 8, 28, 14, 48, 55, 98, 154, 54, 495, 1034, 504, 559, 208, 440, 2078, 2000, 350, 3519, 6578, 2574, 5983, 2924, 21734, 25023, 11934, 30303, 120175, 81718, 11438, 73150, 71630, 43470, 50048, 511784, 371448, 37960, 1478048, 391950, 812174, 393470, 217854, 576288
Offset: 1

Views

Author

David A. Corneth, Mar 22 2021

Keywords

Examples

			a(6) = 28 as the 28th tetrahedral number, binomial(28+2, 3) = 4060, is divisible by 6 tetrahedral numbers namely 1, 4, 10, 20, 35 and 4060.
		

Crossrefs

Programs

  • PARI
    first(n) = { my(res = vector(n), todo = n); for(i = 1, oo, c = f(i); if(c <= n && res[c] == 0, res[c] = i; todo--; if(todo <= 0, return(res)))) }
    f(n) = my(d = divisors(binomial(n + 2, 3))); #select(x -> istetra(x), d) istetra(n)= my(k = sqrtnint(6*n, 3)); binomial(k + 2, 3) == n

A359231 a(n) is the smallest centered triangular number divisible by exactly n centered triangular numbers.

Original entry on oeis.org

1, 4, 64, 5860, 460, 74260, 14260, 1221760, 5567104, 103360, 20120860, 169096960, 1211757760, 31286787760, 31498960, 114183284260, 1553569960, 33186496960, 446613160960, 43581101074960, 274644405760, 64262632960, 121634429663260, 5786547945760
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 22 2022

Keywords

Comments

a(25) > 10^15. a(30) = 281149511296960. - Jon E. Schoenfield, Dec 25 2022

Examples

			a(5) = 460, because 460 is a centered triangular number that has 5 centered triangular divisors {1, 4, 10, 46, 460} and this is the smallest such number.
		

Crossrefs

Programs

  • Magma
    // Note: the program below finds all terms through a(22) except for
    //  a(20) = 43581101074960, which would be reached at k = 5390183.
    a := [ 0 : n in [ 1 .. 22 ] ];
    for k in [ 0 .. 550000 ] do
       c := 3*((k*(k - 1)) div 2) + 1;
       D := Divisors(c);
       n := 0;
       for d in D do
          if d mod 3 eq 1 then
             if IsSquare(((d - 1) div 3)*8 + 1) then
                n +:= 1;
             end if;
          end if;
       end for;
       if a[n] eq 0 then
          a[n] := c;
       end if;
    end for;
    a; // Jon E. Schoenfield, Dec 25 2022

Extensions

a(8)-a(24) from Jon E. Schoenfield, Dec 25 2022

A368855 Index of the first occurrence of n in A076982.

Original entry on oeis.org

1, 2, 3, 8, 14, 15, 39, 20, 44, 35, 195, 119, 104, 594, 224, 384, 455, 539, 440, 560, 3080, 2184, 1539, 2015, 2639, 5264, 4199, 15399, 13299, 8855, 23919, 2079, 30744, 43680, 36575, 14399, 5984, 58695, 113399, 47124, 107184, 12375, 78624, 98175, 73359, 111320, 242879, 185724
Offset: 1

Views

Author

Robert G. Wilson v, Jan 09 2024

Keywords

Examples

			a(1) = 1 since A076982(1) = 1;
a(2) = 2 since A076982(2) = 2;
a(3) = 3 since A076982(3) = 3;
a(4) = 8 since A076982(8) = 4;
a(5) = 14 since A076982(14) = 5; etc.
		

Crossrefs

Essentially the same as A225400.

Programs

  • Mathematica
    k = 1; t[] := 0; f[n] := Length@ Select[ Divisors[n (n +1)/2], IntegerQ@ Sqrt[8# +1] &]; While[k < 250000, a = f@k; If[ t[a] == 0, t[a] = k]; k++]; t /@ Range@ 48

Formula

a(n) = (sqrt(8*A076983(n)+1)-1)/2. - Amiram Eldar, Jan 10 2024
Showing 1-8 of 8 results.