A084416 Triangle read by rows: T(n,k) = Sum_{i=k..n} i!*Stirling2(n,i), n >= 1, 1 <= k <= n.
1, 3, 2, 13, 12, 6, 75, 74, 60, 24, 541, 540, 510, 360, 120, 4683, 4682, 4620, 4080, 2520, 720, 47293, 47292, 47166, 45360, 36960, 20160, 5040, 545835, 545834, 545580, 539784, 498960, 372960, 181440, 40320, 7087261, 7087260, 7086750, 7068600, 6882120, 6048000, 4142880, 1814400, 362880
Offset: 1
Examples
Triangle begins with T(n,k): k= 1, 2, 3, 4, 5 n=1 1 n=2 3, 2 n=3 13, 12, 6 n=4 75, 74, 60, 24 n=5 541, 540, 510, 360, 120 ... From _Thomas Scheuerle_, Apr 25 2022: (Start) If we would add n = 0, k = 0 to the data of this sequence: k= 0, 1, 2, n=0 1 n=1 1, 1 n=2 3, 3, 2 ... T(n, 3) with 3 preceding zeros is: 0,0,0,6,60,510,4620,... This sequence has the e.g.f.: (e^x-1)^3/(2-e^x). . 13 arrangements for n = 3 and k = 1 (one rank required): 1,2,3 1,2|3 2,3|1 1,3|2 1|2,3 2|1,3 3|1,2 1|2|3 1|3|2 2|1|3 2|3|1 3|1|2 3|2|1 12 arrangements for n = 3 and k = 2 (two ranks required): 1,2|3 2,3|1 1,3|2 1|2,3 2|1,3 3|1,2 1|2|3 1|3|2 2|1|3 2|3|1 3|1|2 3|2|1 6 arrangements for n = 3 and k = 3 (three ranks required): 1|2|3 1|3|2 2|1|3 2|3|1 3|1|2 3|2|1 . (End)
Crossrefs
Programs
-
Maple
T := (n,k)->sum(i!*Stirling2(n,i),i=k..n): seq(seq(T(n,k),k=1..n),n=1..10);
-
PARI
row(n) = vector(n, k, sum(i=k, n, i!*stirling(n, i, 2))); \\ Michel Marcus, Apr 20 2022
Formula
E.g.f. for m-th column: (exp(x)-1)^m/(2-exp(x)). - Vladeta Jovovic, Sep 14 2003
T(n, k) = Sum_{m = k..n} A090582(n + 1, m + 1).
From Thomas Scheuerle, Apr 25 2022: (Start)
Sum_{k = 0..n} T(n, k) = A005649(n). Column k = 0 is not part of data.
Sum_{k = 1..n} T(n, k) = A069321(n).
T(n, 0) = A000670(n). Column k = 0 is not part of data.
T(n, 1) = A000670(n), for n > 0.
T(n, 2) = A052875(n).
T(n, 3) = A102232(n).
T(n, n) = n! = A000142. (End)
Extensions
More terms from Emeric Deutsch, May 11 2004
More terms from Michel Marcus, Apr 20 2022
Comments