cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A052875 E.g.f.: (exp(x)-1)^2/(2-exp(x)).

Original entry on oeis.org

0, 0, 2, 12, 74, 540, 4682, 47292, 545834, 7087260, 102247562, 1622632572, 28091567594, 526858348380, 10641342970442, 230283190977852, 5315654681981354, 130370767029135900, 3385534663256845322, 92801587319328411132, 2677687796244384203114, 81124824998504073881820
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.
Stirling transform of A005359(n-1)=[0,0,2,0,24,0,...] is a(n-1)=[0,0,2,12,74,...]. - Michael Somos, Mar 04 2004
Stirling transform of -(-1)^n*A052566(n-1)=[1,-1,4,-6,48,...] is a(n-1)=[1,0,2,12,74,...]. - Michael Somos, Mar 04 2004
Stirling transform of A000142(n)=[0,2,6,24,120,...] is a(n)=[0,2,12,74,...]. - Michael Somos, Mar 04 2004
Stirling transform of A007680(n)=[2,10,42,216,...] is a(n+1)=[2,12,74,...]. - Michael Somos, Mar 04 2004
a(n) is the number of chains in the power set of {1,2,...,n} that do not contain the empty set and do not contain {1,2,...,n}. Equivalently, a(n) is the number of ordered set partitions of {1,2,...,n} into at least 2 classes. - Geoffrey Critzer, Sep 01 2014

Examples

			a(3) = 12 because we have: {{1}}, {{2}}, {{3}}, {{1,2}}, {{1,3}}, {{2,3}}, {{1}, {1,2}}, {{1}, {1,3}}, {{2}, {1,2}}, {{2}, {2,3}}, {{3}, {1,3}}, {{3}, {2,3}}. - _Geoffrey Critzer_, Sep 01 2014
		

Crossrefs

Programs

  • Maple
    spec := [S, {B = Set(Z, 1 <= card), C = Sequence(B, 1 <= card), S=Prod(B, C)}, labeled]: seq(combstruct[count](spec, size=n),  n=0..20);
  • Mathematica
    CoefficientList[Series[(E^x-1)^2/(2-E^x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 25 2014 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(subst(y^2/(1-y),y,exp(x+x*O(x^n))-1),n))
    
  • Sage
    def A052875(n):
        return add(add((-1)^(j-i)*binomial(j,i)*i^n for i in range(n+1)) for j in range(n+1)) - 1
    [A052875(n) for n in range(19)] # Peter Luschny, Jul 22 2014

Formula

Second column of A084416: Sum_{i=2..n} i!*Stirling2(n, i) = A000670(n)-1. - Vladeta Jovovic, Sep 15 2003
E.g.f.: (exp(x)-1)^2/(2-exp(x)).
a(n) ~ n! / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, Feb 25 2014
E.g.f.: A(x)*(1/(1 - A(x)) - 1) where A(x)=exp(x)-1. - Geoffrey Critzer, Sep 01 2014

Extensions

New name using e.g.f., Vaclav Kotesovec, Feb 25 2014

A341091 Triangle read by rows: Coefficients for calculation of the sum of all the finite differences from order zero to order k. Sum_{n=0..k} T(n, k)*b(n) = b(0) + b(1) + ... + b(k) + (b(1) - b(0)) + ... + (b(k) - b(k-1)) + ((b(2) - b(1)) - (b(1) - b(0))) + ... .

Original entry on oeis.org

1, 0, 2, 1, -1, 3, 0, 3, -3, 4, 1, -2, 7, -6, 5, 0, 4, -8, 14, -10, 6, 1, -3, 13, -21, 25, -15, 7, 0, 5, -15, 35, -45, 41, -21, 8, 1, -4, 21, -49, 81, -85, 63, -28, 9, 0, 6, -24, 71, -129, 167, -147, 92, -36, 10, 1, -5, 31, -94, 201, -295, 315, -238, 129, -45, 11
Offset: 0

Views

Author

Thomas Scheuerle, Feb 13 2022

Keywords

Comments

If we want to calculate the sum of finite differences for a sequence b(n):
b(0)*T(0, n) + ... + b(n)*T(n, n) = b(0) + b(1) + ... + b(n) + (b(1) - b(0)) + ... + (b(n) - b(n-1)) + ((b(2) - b(1)) - (b(1) - b(0))) + ... This sum includes the sequence b(n) itself. This defines an invertible linear sequence transformation with a deep connection to Bernoulli numbers and other interesting sequences of rational numbers.
From Thomas Scheuerle, Apr 29 2024: (Start)
These are the coefficients of the polynomials defined by the recurrence: P(k, x) = P(k - 1, x) + (x^2 - x)*P(k - 2, x) + 1, with P(-1, x) = 0 and P(0, x) = 1. This can also be expressed as P(k, x) = Sum_{m=1..k+1} binomial(k+2 - m, m)*(x^2 - x)^(m - 1) = Sum_{n=0..k} T(n, k)*x^(k-n). If we would evaluate P(k, t) as sequence for some fixed t then we get the expansion of 1/((1 - x)*(1+(t-1)*x)*(1 - t*x)).
We may replace (x^2 - x) by (x^(-2) - x^(-1)) to get the coefficients in reverse order: x^k*Sum_{m=1..k+1} binomial(k+2 - m, m)*(x^(-2) - x^(-1))^(m - 1) = Sum_{n=0..k} T(n, k)*x^n = F(k, x). If we would evaluate F(k, t) as sequence for some fixed t then we get the expansion of 1/((1 - x)*(1 - (t-1)*x)*(1 - t*x)). (End)

Examples

			Triangle begins with T(n, k):
   n=   0,  1,   2,   3,   4,   5,   6,   7,   8
  k=0   1
  k=1   0,  2
  k=2   1, -1,   3
  k=3   0,  3,  -3,   4
  k=4   1, -2,   7,  -6,   5
  k=5   0,  4,  -8,  14, -10,   6
  k=6   1, -3,  13, -21,  25, -15,   7
  k=7   0,  5, -15,  35, -45,  41, -21,   8
  k=8   1, -4,  21, -49,  81, -85,  63, -28,   9
  ...
		

Crossrefs

Cf. A027642, A164555 (Numerators and denominators of Bernoulli numbers).
Cf. A001008, A002805 (Numerators and denominators of harmonic numbers).
Sequences below will be obtained by evaluation of the associated polynomials:

Programs

  • PARI
    A341091(n, k) = sum(m=n, k,(-1)^(m+n)*binomial(m+1, n))
    
  • PARI
    A341091(n, k) = (1/2)*(-1)^n*(2*(-1)^k*binomial(2+k, n)*hypergeom([1,k+3],k+3-n,-1)+(-1/2)^n*(2^(n+1)-1)) \\ Thomas Scheuerle, Apr 29 2024

Formula

b(0)*T(0, m) + b(1)*T(1, m) + ... + b(m)*T(m, m)
= Sum_{j=0..m} Sum_{n=0..m-j} Sum_{k=0..n} (-1)^k*binomial(n, k)*b(j+n-k)
= Sum_{n=0..m} b(n)*Sum_{j=n..m}(-1)^(j+n)*binomial(j+1, n).
T(n, k) = Sum_{m=n..k}(-1)^(m+n)*binomial(m+1, n).
T(n, k) = (1/2)*(-1)^n*(2*(-1)^k*binomial(2+k, n)*Hypergeometric2F1(1, k+3, k+3-n, -1)+(-1/2)^n*(2^(n+1) - 1)), where Hypergeometric2F1 is the Gaussian hypergeometric function 2F1 as defined in Mathematica. - Thomas Scheuerle, Apr 29 2024
T(k, k) = A000027(k+1) The positive integers.
|T(k-1, k)| = A000217(k) The triangular numbers.
T(k-2, k) = A004006(k).
|T(k-3, k)| = A051744(k).
T(0, k*2) = 1.
T(0, k*2 + 1) = 0.
T(1, k*2 + 1) = k + 2.
T(1, k*2 + 2) = -(k + 1).
T(n, k) with constant n and variable k, a linear recurrence relation with characteristic polynomial (x-1)*(x+1)^(n+1).
Sum_{n=0..k} T(n, k)*B_n = 1. B_n is the n-th Bernoulli number with B_1 = 1/2. B_n = A164555(n)/A027642(n).
Sum_{n=0..k} T(n, k)*(1 - B_n) = k.
Sum_{n=0..k} T(n, k)*(2*n - 3+3*B_n) = k^2.
Sum_{n=0..k} T(n, k)*A032346(n) = A032346(k+1).
From Thomas Scheuerle, Apr 29 2024: (Start)
Sum_{n=0..k} T(n, k)*A000110(n+1) = A000110(k+2) - 1.
Sum_{n=0..k} T(n, k)*(1/(1+n)) = H(1+floor(k/2)), where H(k) is the harmonic number A001008(k)/A002805(k). (End)
Sum_{n=0..k} T(n, k)*c(n) = c(k). C(k) = {-1, 0, 1/2, 1/2, 1/8, -7/20, ...} this sequence of rational numbers can be defined recursively: c(0) = -1, c(m) = (-c(m-1) + Sum_{k=0..m-1} A130595(m+1, k)*c(k))/m.
c(m) is an eigensequence of this transformation, all eigensequences are c(m) multiplied by any factor.
Sum_{n=0..k} T(n, k)*A000045(n) = 2*(A000045(2*floor((k+1)/2) - 1) - 1). A000045 are the Fibonacci numbers.
Sum_{n=0..k} T(n, k)*A000032(n) = A000032(2*floor(k/2)+2) - 2. A000032 are the Lucas numbers.
Sum_{n=0..k} T(n, k)*A001045(n) = A145766(floor((k+1)/2)). A001045 is the Jacobsthal sequence.
This sequence acting as an operator onto a monomial n^w:
Sum_{n=0..k} T(n, k)*n^w = (1/(w+1))*k^(w+1) + Sum_{v=1..w} ((v+B_v)*(w)_v/v!)*k^(w+1-v) - A052875(w) + O_k(w) (w)_v is the falling factorial. If k > w-1 then O_k(w) = 0. If k <= w-1 then O_k(w) is A084416(w, 2+k), the sequence with the exponential generating function: (e^x-1)^(2+k)/(2-e^x).
From Thomas Scheuerle, Apr 29 2024: (Start)
This sequence acting by its inverse operator onto a monomial k^w:
Sum_{n=0..k} T(n, k)*( Sum_{m=0..k} ((-1)^(1+m+k)*binomial(k, m)*(2^(k-m) - 1)*n^m + A344037(m)*B_n) ) = k^w - A372245(w, k+3), note that A372245(w, k+3) = 0 if k+3 > w. B_n is the n-th Bernoulli number with B_1 = 1/2.
How this sequence will act as an operator onto a Dirichlet series may be developed by the formulas below:
Sum_{n=0..k} T(n, k)*2^n = A000295(k+2).
Sum_{n=0..k} T(n, k)*3^n = A000392(k+3).
Sum_{n=0..k} T(n, k)*4^n = A016208(k).
Sum_{n=0..k} T(n, k)*5^n = A016218(k).
Sum_{n=0..k} T(n, k)*6^n = A016228(k).
Sum_{n=0..k} T(n, k)*7^n = A016241(k).
Sum_{n=0..k} T(n, k)*8^n = A016249(k).
Sum_{n=0..k} T(n, k)*9^n = A016256(k).
Sum_{n=0..k} T(n, k)*10^n = A016261(k).
Sum_{n=0..k} T(n, k)*m^n = m^2*m^k/(m-1) - (m-1)^2*(m-1)^k/(m-2) + 1/((m-1)*(m-2)), for m > 2.
Sum_{n=0..k} T(n, k)*( m*B_n + (m-1)*Sum_{t=1..m} t^n )*(1/m^2) = m^k, for m > 0. B_n is the n-th Bernoulli number with B_1 = 1/2.
Sum_{n=0..k} T(n, k) zeta(-n) = Sum_{j=0..k} (-1)^(1+j)/(2+j) = (-1)^(k+1)*LerchPhi(-1, 1, k+3) - 1 + log(2).
Sum_{n=0..k} T(k - n, k)*2^n = A000975(k+1)
Sum_{n=0..k} T(k - n, k)*3^n = A091002(k+2)
Sum_{n=0..k} T(k - n, k)*4^n = A249997(k). (End)

A090665 Triangle read by rows: T(n,k) = number of preferential arrangements of n things where the first object has rank k.

Original entry on oeis.org

1, 2, 1, 6, 5, 2, 26, 25, 18, 6, 150, 149, 134, 84, 24, 1082, 1081, 1050, 870, 480, 120, 9366, 9365, 9302, 8700, 6600, 3240, 720, 94586, 94585, 94458, 92526, 82320, 57120, 25200, 5040, 1091670, 1091669, 1091414, 1085364, 1038744, 871920, 554400, 221760, 40320
Offset: 1

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Dec 16 2003

Keywords

Comments

The rows are the reverses of the rows of A054255.
Row sums give A000670.
Column 1 is A000629. - Joerg Arndt, Dec 08 2014
From Vincent Jackson, May 01 2023: (Start)
The formula
T(n, k) = Sum_{i=k..n-1} i!*StirlingS2(n-1, i) + (k-1)!*StirlingS2(n-1,k-1)
can be derived by splitting the weak orders with the first object at rank k into three categories:
1. weak orders where another object (of the n-1 other objects) has rank k,
2. weak orders where all other objects have rank strictly less than k, and
3. weak orders where no other object is at rank k, but some object has rank greater than k.
The number of weak orders in the first category is Sum_{i=k..n-1} i!*StirlingS2(n-1, i), the number of weak orders of length n-1 with number of ranks between k and n-1 (i.e. A084416(n-1,k)). Given a weak order of length n-1 and number of ranks i >= k, the corresponding weak order of length n with the specified object at rank k is formed by inserting the new object into the appropriate rank.
The number of weak orders in the second category is (k-1)!*StirlingS2(n-1,k-1), the number of weak orders of length n-1 with number of ranks k-1. Given a weak order of length n-1 and number of ranks k-1, the corresponding weak order is formed by appending the new object in its own rank.
Lastly, the number of weak orders in the third category is (again) Sum_{i=k..n-1} i!*StirlingS2(n-1, i). Given a weak order of length n-1 and number of ranks k-1, the corresponding weak order is formed by inserting the new object in its own rank after the rank k-1, thereby shifting by one the ranks originally greater than or equal to k. (End)

Examples

			Triangle starts:
01: 1;
02: 2, 1;
03: 6, 5, 2;
04: 26, 25, 18, 6;
05: 150, 149, 134, 84, 24;
06: 1082, 1081, 1050, 870, 480, 120;
07: 9366, 9365, 9302, 8700, 6600, 3240, 720;
08: 94586, 94585, 94458, 92526, 82320, 57120, 25200, 5040;
09: 1091670, 1091669, 1091414, 1085364, 1038744, 871920, 554400, 221760, 40320;
10: 14174522, 14174521, 14174010, 14155350, 13950720, 12930120, 10190880, 5957280, 2177280, 362880;
...
		

Crossrefs

Programs

  • Mathematica
    T = {n, k} |-> 2*Sum[i!*StirlingS2[n-1, i], {i, k, n-1}] + (k-1)i!*StirlingS2[n-1, k-1]  (* Vincent Jackson, May 01 2023 *)

Formula

From Vincent Jackson, May 01 2023: (Start)
T(n, k) = 2*(Sum_{i=k..n-1} i!*StirlingS2(n-1, i)) + (k-1)!*StirlingS2(n-1,k-1).
T(n, k) = 2*A084416(n-1,k) + (k-1)!*StirlingS2(n-1,k-1).
T(n, k) = A084416(n-1,k) + A084416(n-1,k-1). (End)
Sum_{k=1..n} k * T(n,k) = A083410(n). - Alois P. Heinz, Feb 20 2025

Extensions

Corrected by Alois P. Heinz, Dec 08 2014
Name clarified by Vincent Jackson, May 01 2023

A084417 Triangle read by rows: T(n,k)=sum((n+1-i)!*stirling2(n,n+1-i),i=1..k), n>=1, 1<=k<=n.

Original entry on oeis.org

1, 2, 3, 6, 12, 13, 24, 60, 74, 75, 120, 360, 510, 540, 541, 720, 2520, 4080, 4620, 4682, 4683, 5040, 20160, 36960, 45360, 47166, 47292, 47293, 40320, 181440, 372960, 498960, 539784, 545580, 545834, 545835, 362880, 1814400, 4142880, 6048000
Offset: 1

Views

Author

N. J. A. Sloane, Jun 24 2003

Keywords

Comments

Interpolates between A000670 and factorials.

Examples

			1;2,3;6,12,13;24,60,74,75;120,360,510,540,541;
		

Crossrefs

Mirror image of array in A084416.
T(n, 1)=n!=A000142(n), T(n, n)=A000670(n), T(n, n-1)=A052875(n).

Programs

  • Maple
    with(combinat): T:=(n,k)->sum((n+1-i)!*stirling2(n,n+1-i),i=1..k): seq(seq(T(n,k),k=1..n),n=1..10);

Formula

T(n, k)=sum((n+1-i)!*stirling2(n, n+1-i), i=1..k), n>=1, 1<=k<=n.

Extensions

Edited by Emeric Deutsch, May 11 2004

A372245 Triangular array T(n,k) read by rows: column k is the expansion of e.g.f: exp(-2*x)*(exp(x)-1)^k/(2-exp(x)).

Original entry on oeis.org

1, -1, 1, 3, -1, 2, -1, 7, 0, 6, 27, 11, 26, 12, 24, 119, 151, 120, 150, 120, 120, 1203, 1139, 1202, 1140, 1200, 1080, 720, 11759, 11887, 11760, 11886, 11760, 11760, 10080, 5040, 136587, 136331, 136586, 136332, 136584, 136080, 131040, 100800, 40320, 1771559, 1772071, 1771560, 1772070
Offset: 0

Views

Author

Thomas Scheuerle, Apr 26 2024

Keywords

Examples

			Triangle T(n, k) starts:
[0]  1;
[1] -1,      1;
[2]  3,     -1,      2;
[3] -1,      7,      0,      6;
[4]  27,     11,     26,     12,     24;
[5]  119,    151,    120,    150,    120,    120;
[6]  1203,   1139,   1202,   1140,   1200,   1080,   720;
[7]  11759,  11887,  11760,  11886,  11760,  11760,  10080,  5040;
[8]  136587, 136331, 136586, 136332, 136584, 136080, 131040, 100800, 40320;
		

Crossrefs

Programs

  • PARI
    T(n, k) = sum(m=0, n, ((-1)^((k > 0)+m+n)*binomial(n, m)*(2^(n-m)-(k > 0))*sum(h=max(k-1,0), m, h!*stirling(m, h, 2))))

Formula

T(n, k) = Sum_{m=0..n} ((-1)^(1+m+n)*binomial(k, n)*(2^(k - n) - 1)*A084416(m, k - 1)), for k > 0.
T(n, 0) = A344037(n).
T(n, 1) = A052841(n) - A344037(n).
T(n, 2) = A344037(n) - 2*A052841(n) + A000670(n).
Showing 1-5 of 5 results.