cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005265 a(1)=3, b(n) = Product_{k=1..n} a(k), a(n+1) is the smallest prime factor of b(n)-1.

Original entry on oeis.org

3, 2, 5, 29, 11, 7, 13, 37, 32222189, 131, 136013303998782209, 31, 197, 19, 157, 17, 8609, 1831129, 35977, 508326079288931, 487, 10253, 1390043, 18122659735201507243, 25319167, 9512386441, 85577, 1031, 3650460767, 107, 41, 811, 15787, 89, 68168743, 4583, 239, 1283, 443, 902404933, 64775657, 2753, 23, 149287, 149749, 7895159, 79, 43, 1409, 184274081, 47, 569, 63843643
Offset: 1

Views

Author

Keywords

Comments

Suggested by Euclid's proof that there are infinitely many primes.

References

  • R. K. Guy and R. Nowakowski, Discovering primes with Euclid, Delta (Waukesha), Vol. 5, pp. 49-63, 1975.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, 8 (1993), 23-32.

Crossrefs

Essentially the same as A084598.

Programs

  • Maple
    a :=n-> if n = 1 then 3 else numtheory:-divisors(mul(a(i),i = 1 .. n-1)-1)[2] fi:seq(a(n), n=1..15);
    # Robert FERREOL, Sep 25 2019
  • PARI
    lpf(n)=factor(n)[1,1] \\ better code exists, usually best to code in C and import
    print1(A=3); for(n=2,99, a=lpf(A); print1(", "a); A*=a) \\ Charles R Greathouse IV, Apr 07 2020

A005266 a(1)=3, b(n) = Product_{k=1..n} a(k), a(n+1) is the largest prime factor of (b(n)-1).

Original entry on oeis.org

3, 2, 5, 29, 79, 68729, 3739, 6221191, 157170297801581, 70724343608203457341903, 46316297682014731387158877659877, 78592684042614093322289223662773, 181891012640244955605725966274974474087, 547275580337664165337990140111772164867508038795347198579326533639132704344301831464707648235639448747816483406685904347568344407941
Offset: 1

Views

Author

Keywords

Comments

Suggested by Euclid's proof that there are infinitely many primes.
a(15) requires completing the factorization: 13 * 67 * 14479 * 167197 * 924769 * 2688244927 * 888838110930755119 * 14372541055015356634061816579965403 * C211 where C211=6609133306626483634448666494646737799624640616060730302142187545405582531010390290502001156883917023202671554510633460047901459959959325342475132778791495112937562941066523907603281586796876335607258627832127303. - Sean A. Irvine, Nov 10 2009

References

  • R. K. Guy and R. Nowakowski, Discovering primes with Euclid, Delta (Waukesha), Vol. 5, pp. 49-63, 1975.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, 8 (1993), 23-32.

Crossrefs

Essentially the same as A084599.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=1, 3, max(factorset(mul(a(i), i=1..n-1)-1)[]))
        end:
    seq(a(n), n=1..10);  # Alois P. Heinz, Sep 26 2013
  • Mathematica
    a[0] = 3; a[n_] := a[n] = Block[{p = Times @@ (a[#] & /@ Range[0, n - 1]) - 1}, FactorInteger[p][[-1, 1]]]; Array[a, 13] (* Robert G. Wilson v, Sep 26 2013 *)

Extensions

a(14) from Joe K. Crump (joecr(AT)carolina.rr.com), Jul 26 2000

A084598 a(1) = 2, a(2) = 3; for n >= 2, a(n+1) is smallest prime factor of (Product_{k = 1..n} a(k)) - 1.

Original entry on oeis.org

2, 3, 5, 29, 11, 7, 13, 37, 32222189, 131, 136013303998782209, 31, 197, 19, 157, 17, 8609, 1831129, 35977, 508326079288931, 487, 10253, 1390043, 18122659735201507243, 25319167, 9512386441, 85577, 1031, 3650460767, 107
Offset: 1

Views

Author

Marc LeBrun, May 31 2003

Keywords

Comments

Like the Euclid-Mullin sequence A000945, but subtracting rather than adding 1 to the product.
The first 4 terms are identical with A084599. It starts diverging at a(5) because the factorization of 2*3*5*29 - 1 = 869 = 11*79 gives A084598(5)=11 and A084599(5)=79. - Hugo Pfoertner, Mar 31 2004

Examples

			a(4) = 29 since 2*3*5 = 30 and 29 is the smallest prime factor of 30-1.
		

Crossrefs

Essentially the same as A005265.

Programs

  • Mathematica
    a={2,3}; q=2;
    For[n=3,n<=19,n++,
        q=q*Last[a];
        AppendTo[a,Min[FactorInteger[q-1][[All,1]]]];
        ];
    a (* Robert Price, Jul 17 2015 *)

Extensions

More terms from Hugo Pfoertner, May 31 2003, using Dario Alpern's ECM
Showing 1-3 of 3 results.