cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084784 Binomial transform = self-convolution: first column of the triangle (A084783).

Original entry on oeis.org

1, 1, 2, 6, 25, 137, 944, 7884, 77514, 877002, 11218428, 160010244, 2516742498, 43260962754, 806650405800, 16213824084864, 349441656710217, 8037981040874313, 196539809431339642, 5090276002949080318, 139202688233361310841, 4008133046329085884137
Offset: 0

Views

Author

Paul D. Hanna, Jun 13 2003

Keywords

Comments

In the triangle (A084783), the diagonal (A084785) is the self-convolution of this sequence and the row sums (A084786) gives the differences of the diagonal and this sequence.
Ramanujan considers the continued fraction phi(x) = 1 / (x + 1 - 1^2 / (x + 3 - 2^2 / (x + 5 - 3^2 / (x + 7 - 4^2 / ...)))) and states that phi(x+1) approaches x phi(x)^2 as x gets large. The asymptotic expansion is phi(x) = 1/x - 1/x^2 + 2/x^3 - 6/x^4 + 24/x^5 - ... + (-1)^n * n! / x^(n+1) + ... but if we replace this with f(x) = a(0)/x - a(1)/x^2 + a(2)/x^3 - a(3)/x^4 + ... then formally f(x+1) = x f(x)^2 which is similar to my Feb 16 2006 formula. - Michael Somos, Jun 20 2015
This is also the Euler transform of A060223. - Gus Wiseman, Oct 16 2016

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 25*x^4 + 137*x^5 + 944*x^6 + ...
where
A(x) = (1-x)^(-1/4)*(1-2*x)^(-1/8)*(1-3*x)^(-1/16)*(1-4*x)^(-1/32)*...
Also,
log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 75*x^4/4 + 541*x^5/5 + 4683*x^6/6 + ... + A000670(n)*x^n/n + ...
thus, the logarithmic derivative equals the series:
A'(x)/A(x) = 1/(1-x) + 2!*x/((1-x)*(1-2*x)) + 3!*x^2/((1-x)*(1-2*x)*(1-3*x)) + 4!*x^3/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) + ...
		

References

  • S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 223.

Crossrefs

Programs

  • Magma
    m:=50;
    f:= func< n,x | Exp((&+[(&+[Factorial(j)*StirlingSecond(k,j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
    R:=PowerSeriesRing(Rationals(), m+1); // A084784
    Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 08 2023
    
  • Maple
    a:= proc(n) option remember;
          1+add(a(j)*(binomial(n,j)-a(n-j)), j=1..n-1)
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 09 2023
  • Mathematica
    a[ n_]:= If[n<1, Boole[n==0], Module[{A= 1/x - 1/x^2}, Do [A= 2 A - Normal @ Series[ (x A^2) /. x -> x-1, {x, Infinity, k+1}], {k,2,n}]; (-1)^n Coefficient[A, x, -n-1]]]; (* Michael Somos, Jun 20 2015 *)
    nn=20;CoefficientList[Series[Exp[Sum[Times[1/k,i!,StirlingS2[k,i],x^k],{k,nn},{i,k}]],{x,0,nn}],x] (* Gus Wiseman, Oct 18 2016 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A=1; for(k=1, n, A = truncate(A + O(x^k)) + x * O(x^k); A += A - 1 / subst(A^-2, x, x / (1 + x)) / (1 + x);); polcoeff(A, n))}; /* Michael Somos, Feb 18 2006 */
    
  • PARI
    /* Using o.g.f. exp( Sum_{n>=1} A000670(n)*x^n/n ): */
    {a(n) = polcoef(exp(intformal(sum(m=1, n+1, m!*x^(m-1)/prod(k=1, m, 1-k*x+x*O(x^n))))), n)}
    for(n=0,30,print1(a(n),", "))
    
  • Python
    # after Alois P. Heinz
    from functools import cache
    from math import comb as binomial
    @cache
    def a(n: int) -> int:
        return 1 + sum((binomial(n, j) - a(n - j)) * a(j) for j in range(1, n))
    print([a(n) for n in range(22)])  # Peter Luschny, Jun 09 2023
  • SageMath
    m=40
    def f(n, x): return exp(sum(sum(factorial(j)*stirling_number2(k,j) *x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
    def A084784_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(m,x) ).list()
    A084784_list(m) # G. C. Greubel, Jun 08 2023
    

Formula

G.f. satisfies A(n*x)^2 = n-th binomial transform of A(n*x).
G.f. A(x) satisfies 1 + x = A(x/(1 + x))^2 / A(x). - Michael Somos, Feb 16 2006
G.f.: A(x) = Product_{n>=1} 1/(1 - n*x)^(1/2^(n+1)). - Paul D. Hanna, Jun 16 2010
G.f.: A(x) = exp( Sum_{n>=1} A000670(n)*x^n/n ) where Sum_{n>=0} A000670(n)*x^n = Sum_{n>=0} n!*x^n/Product_{k=0..n} (1-k*x). - Paul D. Hanna, Sep 26 2011
a(n) ~ (n-1)! / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, Nov 18 2014
G.f. satisfies [x^n] 1/A(x)^(n-1) = [x^n] 1/A(x)^(2*n-2) = -(n-1)*A088791(n) for n >= 0. - Paul D. Hanna, Apr 28 2025