A084784 Binomial transform = self-convolution: first column of the triangle (A084783).
1, 1, 2, 6, 25, 137, 944, 7884, 77514, 877002, 11218428, 160010244, 2516742498, 43260962754, 806650405800, 16213824084864, 349441656710217, 8037981040874313, 196539809431339642, 5090276002949080318, 139202688233361310841, 4008133046329085884137
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 25*x^4 + 137*x^5 + 944*x^6 + ... where A(x) = (1-x)^(-1/4)*(1-2*x)^(-1/8)*(1-3*x)^(-1/16)*(1-4*x)^(-1/32)*... Also, log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 75*x^4/4 + 541*x^5/5 + 4683*x^6/6 + ... + A000670(n)*x^n/n + ... thus, the logarithmic derivative equals the series: A'(x)/A(x) = 1/(1-x) + 2!*x/((1-x)*(1-2*x)) + 3!*x^2/((1-x)*(1-2*x)*(1-3*x)) + 4!*x^3/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) + ...
References
- S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 223.
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..200
Programs
-
Magma
m:=50; f:= func< n,x | Exp((&+[(&+[Factorial(j)*StirlingSecond(k,j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >; R
:=PowerSeriesRing(Rationals(), m+1); // A084784 Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 08 2023 -
Maple
a:= proc(n) option remember; 1+add(a(j)*(binomial(n,j)-a(n-j)), j=1..n-1) end: seq(a(n), n=0..25); # Alois P. Heinz, Jun 09 2023
-
Mathematica
a[ n_]:= If[n<1, Boole[n==0], Module[{A= 1/x - 1/x^2}, Do [A= 2 A - Normal @ Series[ (x A^2) /. x -> x-1, {x, Infinity, k+1}], {k,2,n}]; (-1)^n Coefficient[A, x, -n-1]]]; (* Michael Somos, Jun 20 2015 *) nn=20;CoefficientList[Series[Exp[Sum[Times[1/k,i!,StirlingS2[k,i],x^k],{k,nn},{i,k}]],{x,0,nn}],x] (* Gus Wiseman, Oct 18 2016 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A=1; for(k=1, n, A = truncate(A + O(x^k)) + x * O(x^k); A += A - 1 / subst(A^-2, x, x / (1 + x)) / (1 + x);); polcoeff(A, n))}; /* Michael Somos, Feb 18 2006 */
-
PARI
/* Using o.g.f. exp( Sum_{n>=1} A000670(n)*x^n/n ): */ {a(n) = polcoef(exp(intformal(sum(m=1, n+1, m!*x^(m-1)/prod(k=1, m, 1-k*x+x*O(x^n))))), n)} for(n=0,30,print1(a(n),", "))
-
Python
# after Alois P. Heinz from functools import cache from math import comb as binomial @cache def a(n: int) -> int: return 1 + sum((binomial(n, j) - a(n - j)) * a(j) for j in range(1, n)) print([a(n) for n in range(22)]) # Peter Luschny, Jun 09 2023
-
SageMath
m=40 def f(n, x): return exp(sum(sum(factorial(j)*stirling_number2(k,j) *x^k/k for j in range(1,k+1)) for k in range(1,n+2))) def A084784_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( f(m,x) ).list() A084784_list(m) # G. C. Greubel, Jun 08 2023
Formula
G.f. satisfies A(n*x)^2 = n-th binomial transform of A(n*x).
G.f. A(x) satisfies 1 + x = A(x/(1 + x))^2 / A(x). - Michael Somos, Feb 16 2006
G.f.: A(x) = Product_{n>=1} 1/(1 - n*x)^(1/2^(n+1)). - Paul D. Hanna, Jun 16 2010
G.f.: A(x) = exp( Sum_{n>=1} A000670(n)*x^n/n ) where Sum_{n>=0} A000670(n)*x^n = Sum_{n>=0} n!*x^n/Product_{k=0..n} (1-k*x). - Paul D. Hanna, Sep 26 2011
a(n) ~ (n-1)! / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, Nov 18 2014
G.f. satisfies [x^n] 1/A(x)^(n-1) = [x^n] 1/A(x)^(2*n-2) = -(n-1)*A088791(n) for n >= 0. - Paul D. Hanna, Apr 28 2025
Comments