A084902 a(n) = 5^(n-1)*n*(n+1)/2.
0, 1, 15, 150, 1250, 9375, 65625, 437500, 2812500, 17578125, 107421875, 644531250, 3808593750, 22216796875, 128173828125, 732421875000, 4150390625000, 23345947265625, 130462646484375, 724792480468750, 4005432128906250
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (15,-75,125).
Programs
-
Magma
[5^(n-1)*Binomial(n+1,2): n in [0..30]]; // G. C. Greubel, May 17 2021
-
Mathematica
Table[5^(n-1)n(n+1)/2,{n,0,30}] (* or *) LinearRecurrence[{15,-75,125},{0,1,15},30] (* Harvey P. Dale, Sep 18 2018 *)
-
PARI
a(n)=5^(n-1)*n*(n+1)/2 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[5^(n-1)*binomial(n+1,2) for n in (0..30)] # G. C. Greubel, May 17 2021
Formula
G.f.: x/(1 - 5*x)^3.
E.g.f.: (x/2)*(2 + 5*x)*exp(5*x). - G. C. Greubel, May 17 2021
a(n) = 15*a(n-1) - 75*a(n-2) + 125*a(n-3). - Wesley Ivan Hurt, May 17 2021
Comments