cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084902 a(n) = 5^(n-1)*n*(n+1)/2.

Original entry on oeis.org

0, 1, 15, 150, 1250, 9375, 65625, 437500, 2812500, 17578125, 107421875, 644531250, 3808593750, 22216796875, 128173828125, 732421875000, 4150390625000, 23345947265625, 130462646484375, 724792480468750, 4005432128906250
Offset: 0

Views

Author

Paul Barry, Jun 10 2003

Keywords

Comments

Binomial transform of A084901. Fourth binomial transform of heptagonal numbers A000566. Fifth binomial transform of (0,1,5,0,0,0,...).
Number of n-permutations of 6 objects u, v, w, z, x, y with repetition allowed, containing exactly two u's. Example: a(2)=15 because we have uuw, uuv, uuz, uux, uuy, uwu, uvu, uzu, uxu, uyu, wuu, vuu, zuu, xuu, yuu. - Zerinvary Lajos, Dec 30 2007
A shifted version of A081135. - R. J. Mathar, Sep 17 2008

Crossrefs

Programs

  • Magma
    [5^(n-1)*Binomial(n+1,2): n in [0..30]]; // G. C. Greubel, May 17 2021
    
  • Mathematica
    Table[5^(n-1)n(n+1)/2,{n,0,30}] (* or *) LinearRecurrence[{15,-75,125},{0,1,15},30] (* Harvey P. Dale, Sep 18 2018 *)
  • PARI
    a(n)=5^(n-1)*n*(n+1)/2 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [5^(n-1)*binomial(n+1,2) for n in (0..30)] # G. C. Greubel, May 17 2021

Formula

G.f.: x/(1 - 5*x)^3.
E.g.f.: (x/2)*(2 + 5*x)*exp(5*x). - G. C. Greubel, May 17 2021
a(n) = 15*a(n-1) - 75*a(n-2) + 125*a(n-3). - Wesley Ivan Hurt, May 17 2021