cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A079296 Primes ordered by decreasing value of the function p -> sqrt(q) - sqrt(p) where q is the next prime after p.

Original entry on oeis.org

7, 113, 23, 13, 31, 3, 1327, 19, 47, 199, 139, 89, 5, 211, 293, 53, 523, 317, 61, 181, 73, 887, 1129, 83, 37, 241, 2, 43, 283, 1669, 11, 467, 1069, 337, 509, 2477, 131, 2179, 2971, 1259, 773, 1951, 1637, 409, 3271, 421, 151, 1381, 67, 839, 619, 863, 157, 17, 661, 3137
Offset: 1

Views

Author

Thomas Nordhaus, Feb 09 2003

Keywords

Comments

I computed a couple of thousand primes with EXCEL and ordered them accordingly. There is a very small chance that very large prime numbers will change the order of the given terms above.
This sequence only makes sense if the sequence n -> sqrt(p_(n+1)) - sqrt(p_n) is a zero-sequence which is a hard unsolved problem. See also Andrica's conjecture.
For each consecutive prime pair p < q, the number d = sqrt(q) - sqrt(p) is unique. Place d in order from greatest to least and specify p. See Table II in Wolf. A rearrangement of the primes. - Robert G. Wilson v, Oct 18 2012

Crossrefs

Cf. A078692, A002386, A084974 (records).

Programs

  • Mathematica
    lim = 1/5; lst = {}; p = 2; q = 3; While[p < 50000, If[ Sqrt[q] - Sqrt[p] > lim, AppendTo[lst, {p, Sqrt[q] - Sqrt[p]}]]; p = q; q = NextPrime[q]]; First@ Transpose@ Sort[lst, #1[[2]] > #2[[2]] &] (* Robert G. Wilson v, Oct 18 2012 *)

Extensions

More terms from Robert G. Wilson v, Oct 18 2012

A084976 Values of k that show the slow decrease in the larger values of the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime.

Original entry on oeis.org

4, 30, 217, 263, 367, 429, 462, 590, 650, 738, 3385, 3644, 4522, 4612, 5949, 14357, 31545, 40933, 49414, 104071, 118505, 149689, 157680, 165326, 325852, 415069, 491237, 566214, 597311, 733588, 1319945, 1736516, 2850174, 2857960, 3183065
Offset: 1

Views

Author

Harry J. Smith, Jun 16 2003

Keywords

Comments

a(n) are values of k such that Af(k) > Af(m) for all m > k. This sequence relies on a heuristic calculation and there is no proof that it is correct.

Examples

			a(3)=217 because p(217)=1327, p(218)=1361 and Af(217) =sqrt(1361) - sqrt(1327) = 0.463722... is larger than any value of Af(m)for m>217.
		

References

  • R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.
  • P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.

Crossrefs

A084975 Primes that show the slow decrease in the larger values of the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime.

Original entry on oeis.org

11, 127, 1361, 1693, 2503, 2999, 3299, 4327, 4861, 5623, 31469, 34123, 43391, 44351, 58889, 156007, 370373, 492227, 604171, 1357333, 1562051, 2010881, 2127269, 2238931, 4652507, 6034393, 7230479, 8421403, 8917663, 11114087, 20831533
Offset: 1

Views

Author

Harry J. Smith, Jun 16 2003

Keywords

Comments

a(n) are the primes p(k+1) such that Af(k) > Af(m) for all m > k. This sequence relies on a heuristic calculation and there is no proof that it is correct.

Examples

			a(3)=1361 because p(218)=1361, p(217)=1327 and Af(217) = sqrt(1361) - sqrt(1327) = 0.463722... is larger than any value of Af(m) for m>217.
		

References

  • R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.
  • P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.

Crossrefs

A084977 Values that show the slow decrease in the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime.

Original entry on oeis.org

670873, 639281, 463722, 292684, 260522, 256245, 244265, 228429, 215476, 213675, 203053, 167894, 144069, 137748, 119533, 108882, 92024, 81248, 63042, 56651, 52808, 52185, 36338, 36089, 35698, 29717, 27520, 26189, 23440, 23096, 23005
Offset: 1

Views

Author

Harry J. Smith, Jun 16 2003

Keywords

Comments

a(n) = floor(1000000*Af(k)) with k such that Af(k) > Af(m) for all m > k. This sequence relies on a heuristic calculation and there is no proof that it is correct.

Examples

			a(3)=46372 because p(217)=1327, p(218)=1361 and Af(217) = sqrt(1361)- sqrt(1327) = 0.463722... is larger than any value of Af(m) for m>217.
		

References

  • R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.
  • P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.

Crossrefs

Showing 1-4 of 4 results.