cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A084974 Primes that show the slow decrease in the larger values of the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime.

Original entry on oeis.org

7, 113, 1327, 1669, 2477, 2971, 3271, 4297, 4831, 5591, 31397, 34061, 43331, 44293, 58831, 155921, 370261, 492113, 604073, 1357201, 1561919, 2010733, 2127163, 2238823, 4652353, 6034247, 7230331, 8421251, 8917523, 11113933, 20831323
Offset: 1

Views

Author

Harry J. Smith, Jun 16 2003

Keywords

Comments

a(n) are the primes p(k) such that Af(k) > Af(m) for all m > k. This sequence relies on a heuristic calculation and there is no proof that it is correct.

Examples

			a(3)=1327 because p(217)=1327, p(218)=1361 and Af(217) = sqrt(1361) - sqrt(1327) = 0.463722... is larger than any value of Af(m) for m>217.
		

References

  • R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.
  • P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.

Crossrefs

A084975 Primes that show the slow decrease in the larger values of the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime.

Original entry on oeis.org

11, 127, 1361, 1693, 2503, 2999, 3299, 4327, 4861, 5623, 31469, 34123, 43391, 44351, 58889, 156007, 370373, 492227, 604171, 1357333, 1562051, 2010881, 2127269, 2238931, 4652507, 6034393, 7230479, 8421403, 8917663, 11114087, 20831533
Offset: 1

Views

Author

Harry J. Smith, Jun 16 2003

Keywords

Comments

a(n) are the primes p(k+1) such that Af(k) > Af(m) for all m > k. This sequence relies on a heuristic calculation and there is no proof that it is correct.

Examples

			a(3)=1361 because p(218)=1361, p(217)=1327 and Af(217) = sqrt(1361) - sqrt(1327) = 0.463722... is larger than any value of Af(m) for m>217.
		

References

  • R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.
  • P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.

Crossrefs

A084977 Values that show the slow decrease in the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime.

Original entry on oeis.org

670873, 639281, 463722, 292684, 260522, 256245, 244265, 228429, 215476, 213675, 203053, 167894, 144069, 137748, 119533, 108882, 92024, 81248, 63042, 56651, 52808, 52185, 36338, 36089, 35698, 29717, 27520, 26189, 23440, 23096, 23005
Offset: 1

Views

Author

Harry J. Smith, Jun 16 2003

Keywords

Comments

a(n) = floor(1000000*Af(k)) with k such that Af(k) > Af(m) for all m > k. This sequence relies on a heuristic calculation and there is no proof that it is correct.

Examples

			a(3)=46372 because p(217)=1327, p(218)=1361 and Af(217) = sqrt(1361)- sqrt(1327) = 0.463722... is larger than any value of Af(m) for m>217.
		

References

  • R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.
  • P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.

Crossrefs

A161623 Greatest k for which the Andrica-like conjectural inequalities, prime(k+1)-prime(k)-(1/n)*sqrt(prime(k)) < 0, appear to fail, based on empirical evidence.

Original entry on oeis.org

30, 429, 3644, 4612, 14357, 31545, 40933, 49414, 104071, 149689, 149689, 149689, 149689, 165326, 325852, 325852, 415069, 415069, 491237, 566214
Offset: 1

Views

Author

Daniel Tisdale, Jun 15 2009

Keywords

Comments

This is a family of increasingly restrictive Andrica-like conjectures that all imply Legendre's conjecture.

Examples

			For n = 1, one needs k > 30 for the inequality to hold, and it is conjectured that it holds for all k > 30. In words, the first such inequality says that we expect to see a new prime prime(k+1) between prime(k) and prime(k)+sqrt(prime(k)) for k>30.
		

Crossrefs

Cf. A084976.

Programs

  • Mathematica
    Block[{nn = 1500000, p, q}, Array[Set[p[#], Prime[#]] &, nn + 1]; Array[Set[q[#], (p[# + 1] - p[#])^2] &, nn]; TakeWhile[Monitor[Table[nn - LengthWhile[Table[# q[k] < p[k], {k, nn, 1, -1}], # &] &[n^2], {n, 24}], {n, k}], # < nn/2 &]] (* Michael De Vlieger, Aug 17 2022 *)
  • PARI
    lista(nn) = my(N=10^7, vp=primes(N), va=vector(nn)); for (n=1, nn, my(v = v=vector(N-1, k, n^2*(vp[k+1]-vp[k])^2 < vp[k])); forstep(k=N-1, 1, -1, if (!v[k], va[n] = k; break));); va; \\ Michel Marcus, Aug 17 2022

Extensions

a(2) corrected, name edited and more terms from Michel Marcus, Aug 17 2022
Showing 1-4 of 4 results.