cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084993 Total number of parts in all partitions of n into prime parts.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 6, 9, 12, 16, 20, 27, 33, 42, 53, 64, 80, 96, 117, 141, 169, 201, 239, 282, 333, 390, 456, 532, 617, 715, 826, 951, 1094, 1253, 1435, 1636, 1864, 2119, 2404, 2723, 3078, 3473, 3915, 4403, 4947, 5549, 6215, 6952, 7767, 8665, 9656, 10748
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2003

Keywords

Examples

			Partitions of 9 into primes are 2+2+2+3=3+3+3=2+2+5=2+7; thus a(9)=4+3+3+2=12.
		

Crossrefs

Programs

  • Maple
    g:=sum(x^ithprime(j)/(1-x^ithprime(j)),j=1..20)/product(1-x^ithprime(j),j=1..20): gser:=series(g,x=0,60): seq(coeff(gser,x^n),n=1..57); # Emeric Deutsch, Mar 07 2006
    # second Maple program:
    with(numtheory):
    b:= proc(n, i) option remember; local g;
          if n=0 then [1, 0]
        elif i<1 then [0, 0]
        elif i=1 then `if`(irem(n, 2)=0, [1, n/2], [0, 0])
        else g:= `if`(ithprime(i)>n, [0$2], b(n-ithprime(i), i));
             b(n, i-1) +g +[0, g[1]]
          fi
        end:
    a:= n-> b(n, pi(n))[2]:
    seq(a(n), n=1..60);  # Alois P. Heinz, Oct 30 2012
  • Mathematica
    nn=40;a=Product[1/(1-y x^i),{i,Table[Prime[n],{n,1,nn}]}];Drop[CoefficientList[Series[D[a,y]/.y->1,{x,0,nn}],x],1]  (* Geoffrey Critzer, Oct 30 2012 *)
    b[n_, i_] := b[n, i] = Module[{g}, Which[n == 0, {1, 0}, i < 1, {0, 0}, i == 1, If[EvenQ[n], {1, n/2}, {0, 0}], True, g = If[Prime[i] > n, {0, 0}, b[n - Prime[i], i]]; b[n, i - 1] + g + {0, g[[1]]}]];
    a[n_] := b[n, PrimePi[n]][[2]];
    Array[a, 52] (* Jean-François Alcover, Dec 30 2017, after Alois P. Heinz *)
    Table[Length[Flatten[Select[IntegerPartitions[n],AllTrue[#,PrimeQ]&]]],{n,60}] (* Harvey P. Dale, Jul 11 2023 *)
  • PARI
    sumparts(n, pred)={sum(k=1, n, 1/(1-pred(k)*x^k) - 1 + O(x*x^n))/prod(k=1, n, 1-pred(k)*x^k + O(x*x^n))}
    {my(n=60); Vec(sumparts(n, isprime), -n)} \\ Andrew Howroyd, Dec 28 2017

Formula

G.f.: sum(x^p(j)/(1-x^p(j)),j=1..infinity)/product(1-x^p(j), j=1..infinity), where p(j) is the j-th prime. - Emeric Deutsch, Mar 07 2006