cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085279 Expansion of (1 - 2*x - 2*x^2)/((1 - 2*x)*(1 - 3*x)).

Original entry on oeis.org

1, 3, 7, 17, 43, 113, 307, 857, 2443, 7073, 20707, 61097, 181243, 539633, 1610707, 4815737, 14414443, 43177793, 129402307, 387944777, 1163310043, 3488881553, 10464547507, 31389448217, 94159956043, 282463090913, 847355718307
Offset: 0

Views

Author

Paul Barry, Jun 25 2003

Keywords

Comments

Binomial transform of A001045(n)+1.
For n > 1, also the number of independent vertex sets in the (n-1)-book graph. - Eric W. Weisstein, Aug 16 2017

Crossrefs

Cf. A001045.

Programs

  • Magma
    [1] cat [2^n+3^(n-1): n in [1..30]]; // Vincenzo Librandi, Sep 12 2014
    
  • Maple
    seq(2^n + (3^n - charfcn[0](n))/3, n=0..100); # Robert Israel, Sep 12 2014
  • Mathematica
    CoefficientList[Series[(1 - 2 x - 2 x^2)/((1 - 2 x) (1 - 3 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 12 2014 *)
    Join[{1}, LinearRecurrence[{5, -6}, {3, 7}, 20]] (* Eric W. Weisstein, Aug 16 2017 *)
    Join[{1}, Table[2^n + 3^(n - 1), {n, 20}]] (* Eric W. Weisstein, Aug 16 2017 *)
  • PARI
    Vec((1-2*x-2*x*x)/((1-2*x)*(1-3*x)) + O(x^50)) \\ Michel Marcus, Sep 12 2014

Formula

a(n) = (3*2^n + 3^n - 0^n)/3.
a(n) = 2^n + 3^(n-1) for n >= 1.
G.f.: (1 - 2*x - 2*x*x)/((1 - 2*x)*(1 - 3*x)).
a(n) = 5*a(n-1) - 6*a(n-2) for n > 1. - Vincenzo Librandi, Sep 12 2014
E.g.f.: (1/3)*(exp(3*x) + 3*exp(2*x) -1). - G. C. Greubel, Aug 17 2017