cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A206238 T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with every 2X3 or 3X2 subblock having exactly two equal edges, and new values 0..3 introduced in row major order.

Original entry on oeis.org

15, 60, 60, 310, 256, 310, 1640, 1136, 1136, 1640, 8910, 5728, 4456, 5728, 8910, 51066, 31652, 27168, 27168, 31652, 51066, 294546, 170728, 133392, 283728, 133392, 170728, 294546, 1710184, 943584, 607008, 1236432, 1236432, 607008, 943584, 1710184
Offset: 1

Views

Author

R. H. Hardin Feb 05 2012

Keywords

Comments

Table starts
......15......60......310......1640........8910........51066........294546
......60.....256.....1136......5728.......31652.......170728........943584
.....310....1136.....4456.....27168......133392.......607008.......3503136
....1640....5728....27168....283728.....1236432......9042600......95322432
....8910...31652...133392...1236432....10915392....118573968....1122086640
...51066..170728...607008...9042600...118573968...1448239080...22535636736
..294546..943584..3503136..95322432..1122086640..22535636736..649065145152
.1710184.5175034.17206032.419146392.10022726928.303011941944.8026428934128

Examples

			Some solutions for n=4 k=3
..0..0..1..0....0..0..1..1....0..0..1..1....0..1..2..0....0..0..1..1
..0..1..0..0....0..2..3..3....2..2..3..1....3..2..2..0....2..2..0..1
..2..0..0..1....2..3..3..2....1..2..2..3....2..2..1..2....3..2..2..3
..0..0..2..3....3..3..0..3....0..1..2..2....2..1..2..2....2..1..2..2
..0..1..3..3....0..0..3..3....0..0..3..2....3..2..2..3....2..2..0..2
		

Formula

Empirical for column k:
k=1: a(n) = 8*a(n-1) -11*a(n-2) +36*a(n-3) -303*a(n-4) +232*a(n-5) +147*a(n-6) +756*a(n-7) for n>8
k=2: a(n) = 3*a(n-1) +20*a(n-2) -14*a(n-3) -133*a(n-4) +95*a(n-5) +123*a(n-6) +9*a(n-7) -102*a(n-8) for n>10
k=3: a(n) = a(n-1) +129*a(n-3) -129*a(n-4) for n>7
k=4: a(n) = a(n-1) +339*a(n-3) -339*a(n-4) for n>8
k=5: a(n) = a(n-1) +921*a(n-3) -921*a(n-4) for n>9
k=6: a(n) = a(n-1) +2571*a(n-3) -2571*a(n-4) for n>10
k=7: a(n) = a(n-1) +7329*a(n-3) -7329*a(n-4) for n>11
k=8: a(n) = a(n-1) +21219*a(n-3) -21219*a(n-4) for n>12
k=9: a(n) = a(n-1) +62121*a(n-3) -62121*a(n-4) for n>13
k=10: a(n) = a(n-1) +183291*a(n-3) -183291*a(n-4) for n>14
k=11: a(n) = a(n-1) +543729*a(n-3) -543729*a(n-4) for n>15
apparently a(n) = a(n-1) +3*A085279(k+1)*a(n-3) -3*A085279(k+1)*a(n-4) for k>2 and n>k+4

A254028 a(n) = 2^(n+1) + 3^n + 3.

Original entry on oeis.org

6, 10, 20, 46, 116, 310, 860, 2446, 7076, 20710, 61100, 181246, 539636, 1610710, 4815740, 14414446, 43177796, 129402310, 387944780, 1163310046, 3488881556, 10464547510, 31389448220, 94159956046, 282463090916, 847355718310
Offset: 0

Views

Author

Luciano Ancora, Jan 22 2015

Keywords

Comments

This is the sequence of third terms of "second partial sums of m-th powers".

Crossrefs

Programs

  • Mathematica
    Table[2^(n+1)+3^n+3,{n,0,30}] (* or *) LinearRecurrence[{6,-11,6},{6,10,20},30] (* Harvey P. Dale, Mar 27 2025 *)
  • PARI
    a(n)=2<Charles R Greathouse IV, Jan 23 2015
    
  • PARI
    Vec(-2*(13*x^2-13*x+3)/((x-1)*(2*x-1)*(3*x-1)) + O(x^100)) \\ Colin Barker, Jan 24 2015

Formula

G.f.: -2*(13*x^2-13*x+3) / ((x-1)*(2*x-1)*(3*x-1)). - Colin Barker, Jan 24 2015
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3). - Colin Barker, Jan 24 2015
a(n) = A085279(n+1) = 2*( A099754(n)+1 ) = 2*( A094374(n)-2 ). [Bruno Berselli, Jan 26 2015]

A085280 Expansion of (1-4x+x^2)/((1-x)(1-3x)(1-4x)).

Original entry on oeis.org

1, 4, 14, 48, 166, 584, 2094, 7648, 28406, 107064, 408574, 1575248, 6123846, 23963944, 94261454, 372262848, 1474702486, 5855763224, 23293912734, 92788230448, 369990660326, 1476475856904, 5895443074414, 23550391238048
Offset: 0

Views

Author

Paul Barry, Jun 25 2003

Keywords

Comments

Binomial transform of A085279.

Programs

  • Magma
    [3^n+4^n/3-1/3: n in [0..30]]; // Vincenzo Librandi, May 26 2013
  • Mathematica
    Table[(3^n + 4^n/3 - 1/3), {n, 0, 30}] (* Vincenzo Librandi, May 26 2013 *)
    CoefficientList[Series[(1-4x+x^2)/((1-x)(1-3x)(1-4x)),{x,0,30}],x] (* Harvey P. Dale, Jan 02 2021 *)

Formula

a(n) = 3^n+4^n/3-1/3.

A369490 a(n) = 3^(n+1) + 2*(-2)^(n+1).

Original entry on oeis.org

-1, 17, 11, 113, 179, 857, 1931, 7073, 18659, 61097, 173051, 539633, 1577939, 4815737, 14283371, 43177793, 128878019, 387944777, 1161212891, 3488881553, 10456158899, 31389448217, 94126401611, 282463090913, 847221500579, 2542000046057
Offset: 0

Views

Author

Philippe Deléham, Jan 24 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,6},{-1,17},26] (* James C. McMahon, Jan 30 2024 *)
  • Python
    def A369490(n): return 3**(n+1)+(1<Chai Wah Wu, Feb 25 2024

Formula

a(n) = a(n-1) + 6*a(n-2); a(0) = -1, a(1) = 17.
G.f.: (18*x-1)/((1+2*x)*(1-3*x)).
a(2*n) = A003063(2*n+2).
a(2*n+1) = A085279(2*n+3).
a(n) = 18*A015441(n) - A015441(n+1).

A123924 Numbers k such that 2^(k+1) + 3^k is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 9, 11, 12, 15, 17, 22, 32, 33, 35, 36, 46, 47, 59, 63, 80, 101, 154, 159, 173, 221, 225, 236, 250, 281, 347, 789, 992, 1607, 1631, 1983, 2072, 3616, 3702, 5076, 5957, 6335, 8771, 10203, 10984, 12203, 12350, 13660, 14891
Offset: 1

Views

Author

Alexander Adamchuk, Nov 20 2006

Keywords

Comments

Also numbers k such that A123601(k) = A085279(k+1) = 2^(k+1) + 3^k. There are only 4 known primes of form the 2^k + 3^k, {2, 5, 13, 97} = A082101, corresponding to k = {0, 1, 2, 4}.

Crossrefs

Cf. A082101 (primes of form 2^k + 3^k), A085279, A123601 (smallest prime of the form p^n + q^n + r^n, where p,q,r are primes).

Programs

  • Mathematica
    Do[f=2^(n+1)+3^n;If[PrimeQ[f],Print[{n,f}]],{n,0,347}]
    Select[Range[0,6400],PrimeQ[2^(#+1)+3^#]&] (* Harvey P. Dale, Mar 04 2019 *)
  • PARI
    is(n)=ispseudoprime(2^(n+1)+3^n) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

More terms from Stefan Steinerberger, May 12 2007
a(44) from Jinyuan Wang, Aug 02 2021
a(45)-a(50) from Michael S. Branicky, Aug 05 2021

A247313 a(n) = 5*a(n-1) - 2^n for n>0, a(0)=1.

Original entry on oeis.org

1, 3, 11, 47, 219, 1063, 5251, 26127, 130379, 651383, 3255891, 16277407, 81382939, 406906503, 2034516131, 10172547887, 50862673899, 254313238423, 1271565929971, 6357829125567, 31789144579259, 158945720799143, 794728599801411, 3973642990618447
Offset: 0

Views

Author

Vincenzo Librandi, Sep 12 2014

Keywords

References

  • James Boswell Instituut, Sequences, 2006, p. 19 (recurrence 1.d).

Crossrefs

Programs

  • Magma
    [(2^(n+1)+5^n)/3: n in [0..30]];
    
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[n] == 5 a[n - 1] - 2^n}, a, {n, 0, 30}] (* or *) Table[(2^(n + 1) + 5^n)/3, {n, 0, 30}]
  • PARI
    Vec((1-4*x)/((1-2*x)*(1-5*x)) + O(x^50)) \\ Michel Marcus, Sep 13 2014

Formula

G.f.: (1-4*x)/((1-2*x)*(1-5*x)).
a(n) = ( 2^(n+1) + 5^n )/3.
a(n) = 7*a(n-1) - 10*a(n-2) for n>1.
Showing 1-6 of 6 results.