A206238 T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with every 2X3 or 3X2 subblock having exactly two equal edges, and new values 0..3 introduced in row major order.
15, 60, 60, 310, 256, 310, 1640, 1136, 1136, 1640, 8910, 5728, 4456, 5728, 8910, 51066, 31652, 27168, 27168, 31652, 51066, 294546, 170728, 133392, 283728, 133392, 170728, 294546, 1710184, 943584, 607008, 1236432, 1236432, 607008, 943584, 1710184
Offset: 1
Examples
Some solutions for n=4 k=3 ..0..0..1..0....0..0..1..1....0..0..1..1....0..1..2..0....0..0..1..1 ..0..1..0..0....0..2..3..3....2..2..3..1....3..2..2..0....2..2..0..1 ..2..0..0..1....2..3..3..2....1..2..2..3....2..2..1..2....3..2..2..3 ..0..0..2..3....3..3..0..3....0..1..2..2....2..1..2..2....2..1..2..2 ..0..1..3..3....0..0..3..3....0..0..3..2....3..2..2..3....2..2..0..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..544
Formula
Empirical for column k:
k=1: a(n) = 8*a(n-1) -11*a(n-2) +36*a(n-3) -303*a(n-4) +232*a(n-5) +147*a(n-6) +756*a(n-7) for n>8
k=2: a(n) = 3*a(n-1) +20*a(n-2) -14*a(n-3) -133*a(n-4) +95*a(n-5) +123*a(n-6) +9*a(n-7) -102*a(n-8) for n>10
k=3: a(n) = a(n-1) +129*a(n-3) -129*a(n-4) for n>7
k=4: a(n) = a(n-1) +339*a(n-3) -339*a(n-4) for n>8
k=5: a(n) = a(n-1) +921*a(n-3) -921*a(n-4) for n>9
k=6: a(n) = a(n-1) +2571*a(n-3) -2571*a(n-4) for n>10
k=7: a(n) = a(n-1) +7329*a(n-3) -7329*a(n-4) for n>11
k=8: a(n) = a(n-1) +21219*a(n-3) -21219*a(n-4) for n>12
k=9: a(n) = a(n-1) +62121*a(n-3) -62121*a(n-4) for n>13
k=10: a(n) = a(n-1) +183291*a(n-3) -183291*a(n-4) for n>14
k=11: a(n) = a(n-1) +543729*a(n-3) -543729*a(n-4) for n>15
Comments