A254030
a(n) = 1*4^n + 2*3^n + 3*2^n + 4*1^n.
Original entry on oeis.org
10, 20, 50, 146, 470, 1610, 5750, 21146, 79430, 303050, 1169750, 4554746, 17852390, 70322090, 278050550, 1102537946, 4381257350, 17438542730, 69495104150, 277204002746, 1106488342310, 4418973508970, 17654960746550
Offset: 0
-
seq(add(i*(5 - i)^n, i = 1..4), n = 0..20); # Peter Bala, Jan 31 2017
-
Table[3 2^n + 2^(2 n) + 2 3^n + 4, {n, 0, 25}] (* Bruno Berselli, Jan 27 2015 *)
LinearRecurrence[{10,-35,50,-24},{10,20,50,146},30] (* Harvey P. Dale, Jun 06 2020 *)
-
Vec(-2*(77*x^3-100*x^2+40*x-5)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)) + O(x^100)) \\ Colin Barker, Jan 26 2015
A254031
a(n) = 1*5^n + 2*4^n + 3*3^n + 4*2^n + 5*1^n.
Original entry on oeis.org
15, 35, 105, 371, 1449, 6035, 26265, 117971, 542409, 2538515, 12044025, 57756371, 279305769, 1359736595, 6654800985, 32708239571, 161307227529, 797687136275, 3953299529145, 19626731023571, 97576919443689, 485664640673555
Offset: 0
-
seq(add(i*(6 - i)^n, i = 1..5), n = 0..20); # Peter Bala, Jan 31 2017
-
Table[2^(n + 2) + 2^(2 n + 1) + 3^(n + 1) + 5^n + 5, {n, 0, 25}] (* Bruno Berselli, Jan 27 2015 *)
LinearRecurrence[{15,-85,225,-274,120},{15,35,105,371,1449},30] (* Harvey P. Dale, Jan 24 2022 *)
-
Vec(-(1044*x^4-1604*x^3+855*x^2-190*x+15)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)) + O(x^100)) \\ Colin Barker, Jan 26 2015
A254144
a(n) = 1*6^n + 2*5^n + 3*4^n + 4*3^n + 5*2^n + 6*1^n.
Original entry on oeis.org
21, 56, 196, 812, 3724, 18236, 93436, 494732, 2685004, 14851676, 83384476, 473755052, 2717541484, 15709845116, 91395715516, 534498925772, 3139343105164, 18504595174556, 109397060622556, 648335998054892, 3850205790608044
Offset: 0
-
seq(add(i*(7 - i)^n, i = 1..6), n = 0..20); # Peter Bala, Jan 31 2017
-
Table[5 2^n + 3 4^n + 4 3^n + 2 5^n + 6^n + 6, {n, 0, 25}] (* Bruno Berselli, Jan 27 2015 *)
-
Vec(-(8028*x^5-13916*x^4+8939*x^3-2695*x^2+385*x-21)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)) + O(x^100)) \\ Colin Barker, Jan 26 2015
A254145
a(n) = 1*7^n + 2*6^n + 3*5^n + 4*4^n + 5*3^n + 6*2^n + 7*1^n.
Original entry on oeis.org
28, 84, 336, 1596, 8400, 47244, 278256, 1695036, 10592400, 67518444, 437200176, 2867080476, 18997064400, 126948964044, 854359702896, 5783851121916, 39350309552400, 268842017200044, 1843254419626416, 12675940450459356
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Luciano Ancora, Demonstration of formula
- Index entries for linear recurrences with constant coefficients, signature (28,-322,1960,-6769,13132,-13068,5040).
-
seq(add(i*(8 - i)^n, i = 1..7), n = 0..20); # Peter Bala, Jan 31 2017
-
Table[6 2^n + 4 4^n + 5 3^n + 2 6^n + 3 5^n + 7^n + 7, {n, 0, 25}] (* *)
LinearRecurrence[{28,-322,1960,-6769,13132,-13068,5040},{28,84,336,1596,8400,47244,278256},30] (* or *) Table[Total[ Range[ 7]Range[ 7,1,-1]^n],{n,0,20}] (* Harvey P. Dale, Jun 21 2016 *)
-
Vec(-4*(17316*x^6 -32926*x^5 +24199*x^4 -8911*x^3 +1750*x^2 -175*x +7) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)) + O(x^100)) \\ Colin Barker, Jan 26 2015
A254146
a(n) = 1*8^n + 2*7^n + 3*6^n + 4*5^n + 5*4^n + 6*3^n + 7*2^n + 8*1^n.
Original entry on oeis.org
36, 120, 540, 2892, 17172, 109020, 725220, 4992492, 35277012, 254402940, 1864757700, 13850340492, 103996064052, 787943896860, 6015370201380, 46217575406892, 357036252710292, 2770979252910780, 21591510288112260, 168818732978719692, 1323861500735007732
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Luciano Ancora, Demonstration of formulas
- Index entries for linear recurrences with constant coefficients, signature (36,-546,4536,-22449,67284,-118124,109584,-40320).
-
[7*2^n+5*4^n+8^n+6*3^n+3*6^n+4*5^n+2*7^n+8: n in [0..30]]; // Vincenzo Librandi, Jan 28 2015
-
seq(add(i*(9 - i)^n, i = 1..8), n = 0..20); # Peter Bala, Jan 31 2017
-
Table[7 2^n + 5 4^n + 8^n + 6 3^n + 3 6^n + 4 5^n + 2 7^n + 8, {n, 0, 30}] (* Vincenzo Librandi, Jan 28 2015 *)
LinearRecurrence[{36,-546,4536,-22449,67284,-118124,109584,-40320},{36,120,540,2892,17172,109020,725220,4992492},30] (* Harvey P. Dale, Mar 02 2022 *)
-
vector(30, n, n--; 7*2^n + 5*4^n + 8^n + 6*3^n + 3*6^n + 4*5^n + 2*7^n + 8) \\ Colin Barker, Jan 28 2015
A254147
a(n) = 1*9^n + 2*8^n + 3*7^n + 4*6^n + 5*5^n + 6*4^n + 7*3^n + 8*2^n + 9*1^n.
Original entry on oeis.org
45, 165, 825, 4917, 32505, 229845, 1703625, 13072917, 103008345, 828707925, 6779099625, 56214660117, 471424600185, 3990804658005, 34053173154825, 292542431786517, 2527742384720025, 21950298188288085, 191434401453597225, 1675813243179972117
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Luciano Ancora, Demonstration of formulas
- Index entries for linear recurrences with constant coefficients, signature (45,-870,9450,-63273,269325,-723680,1172700,-1026576,362880).
-
seq(add(i*(10-i)^n, i = 1..9), n = 0..20); # Peter Bala, Jan 31 2017
-
vector(30, n, n--; 8*2^n + 6*4^n + 2*8^n + 7*3^n + 4*6^n + 9^n + 5*5^n + 3*7^n + 9) \\ Colin Barker, Jan 28 2015
A254148
a(n) = 9*2^n + 7*4^n + 3*8^n + 8*3^n + 2*9^n + 6*5^n + 5*6^n + 4*7^n + 10^n + 10.
Original entry on oeis.org
55, 220, 1210, 7942, 57838, 450670, 3682030, 31153342, 270739678, 2403012910, 21693441550, 198578979742, 1838853136318, 17193665419150, 162090976108270, 1538867288166142, 14698448516729758, 141129617123665390, 1361277292619082190
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..999
- Luciano Ancora, Demonstration of formulas
- Index entries for linear recurrences with constant coefficients, signature (55,-1320,18150,-157773,902055,-3416930,8409500,-12753576,10628640,-3628800).
-
vector(30, n, n--; 9*2^n + 7*4^n + 3*8^n + 8*3^n + 2*9^n + 6*5^n + 5*6^n + 4*7^n + 10^n + 10) \\ Colin Barker, Jan 28 2015
Showing 1-7 of 7 results.
Comments