cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085282 Expansion of (1 - 5*x + 5*x^2)/((1-x)*(1-3*x)*(1-4*x)).

Original entry on oeis.org

1, 3, 10, 35, 126, 463, 1730, 6555, 25126, 97223, 379050, 1486675, 5858126, 23166783, 91869970, 365088395, 1453179126, 5791193143, 23100202490, 92207099715, 368247268126, 1471245680303, 5879752544610, 23503319648635, 93966207005126, 375723613252263, 1502470808704330, 6008612301903155, 24030636408870126
Offset: 0

Views

Author

Paul Barry, Jun 25 2003

Keywords

Comments

Binomial transform of A085281.
Number of walks of length 2n+1 between two adjacent vertices in the cycle graph C_12. - Herbert Kociemba, Jul 05 2004

Crossrefs

Cf. A085281.

Programs

  • Magma
    [4^n/3+3^n/2+1/6: n in [0..35]]; // Vincenzo Librandi, May 29 2011
    
  • Mathematica
    CoefficientList[Series[(1 - 5*x + 5*x^2)/((1-x)*(1-3*x)*(1-4*x)), {x, 0, 50}], x] (* Stefano Spezia, Sep 09 2018 *)
    Table[(2^(2*n+1) +3^(n+1) +1)/6, {n,0,40}] (* G. C. Greubel, Nov 11 2024 *)
    LinearRecurrence[{8,-19,12},{1,3,10},30] (* Harvey P. Dale, Jul 20 2025 *)
  • PARI
    apply( {A085282(n)=(4^n*2+3^(n+1))\/6}, [0..29]) \\ M. F. Hasler, Feb 07 2020
    
  • SageMath
    def A085282(n): return (2^(2*n+1) +3^(n+1) +1)//6
    [A085282(n) for n in range(41)] # G. C. Greubel, Nov 11 2024

Formula

a(n) = 4^n/3 + 3^n/2 + 1/6.
a(n) = Sum_{k=-floor(n/6)..floor(n/6)} binomial(2*n, n+6*k)/2. - Mircea Merca, Jan 28 2012
a(n) = 8*a(n-1) - 19*a(n-2) + 12*a(n-3) for n>2. - Colin Barker, Feb 07 2020
E.x.p.: (1/6)*(exp(x) + 3*exp(3*x) + 2*exp(4*x)). - G. C. Greubel, Nov 11 2024