cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A228273 T(n,k) is the number of s in {1,...,n}^n having longest ending contiguous subsequence with the same value of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 18, 6, 3, 0, 192, 48, 12, 4, 0, 2500, 500, 100, 20, 5, 0, 38880, 6480, 1080, 180, 30, 6, 0, 705894, 100842, 14406, 2058, 294, 42, 7, 0, 14680064, 1835008, 229376, 28672, 3584, 448, 56, 8, 0, 344373768, 38263752, 4251528, 472392, 52488, 5832, 648, 72, 9
Offset: 0

Views

Author

Alois P. Heinz, Aug 19 2013

Keywords

Examples

			T(0,0) = 1: [].
T(1,1) = 1: [1].
T(2,1) = 2: [1,2], [2,1].
T(2,2) = 2: [1,1], [2,2].
T(3,1) = 18: [1,1,2], [1,1,3], [1,2,1], [1,2,3], [1,3,1], [1,3,2], [2,1,2], [2,1,3], [2,2,1], [2,2,3], [2,3,1], [2,3,2], [3,1,2], [3,1,3], [3,2,1], [3,2,3], [3,3,1], [3,3,2].
T(3,2) = 6: [1,2,2], [1,3,3], [2,1,1], [2,3,3], [3,1,1], [3,2,2].
T(3,3) = 3: [1,1,1], [2,2,2], [3,3,3].
Triangle T(n,k) begins:
  1;
  0,        1;
  0,        2,       2;
  0,       18,       6,      3;
  0,      192,      48,     12,     4;
  0,     2500,     500,    100,    20,    5;
  0,    38880,    6480,   1080,   180,   30,   6;
  0,   705894,  100842,  14406,  2058,  294,  42,  7;
  0, 14680064, 1835008, 229376, 28672, 3584, 448, 56,  8;
		

Crossrefs

Row sums give: A000312.
Columns k=0-4 give: A000007, A066274(n) = 2*A081131(n) for n>1, A053506(n) for n>2, A055865(n-1) = A085389(n-1) for n>3, A085390(n-1) for n>4.
Main diagonal gives: A028310.
Lower diagonals include (offsets may differ): A002378, A045991, A085537, A085538, A085539.

Programs

  • Maple
    T:= (n, k)-> `if`(n=0 and k=0, 1, `if`(k<1 or k>n, 0,
                 `if`(k=n, n, (n-1)*n^(n-k)))):
    seq(seq(T(n,k), k=0..n), n=0..12);
  • Mathematica
    f[0,0]=1;
    f[n_,k_]:=Which[1<=k<=n-1,n^(n-k)*(n-1),k<1,0,k==n,n,k>n,0];
    Table[Table[f[n,k],{k,0,n}],{n,0,10}]//Grid (* Geoffrey Critzer, May 19 2014 *)

Formula

T(0,0) = 1, else T(n,k) = 0 for k<1 or k>n, else T(n,n) = n, else T(n,k) = (n-1)*n^(n-k).
Sum_{k=0..n} T(n,k) = A000312(n).
Sum_{k=0..n} k*T(n,k) = A031972(n).

A085389 a(1) = 1; for n >= 2, a(n) = (n*(n+1)^(n-1))/(n+1).

Original entry on oeis.org

1, 2, 12, 100, 1080, 14406, 229376, 4251528, 90000000, 2143588810, 56757583872, 1654301902188, 52644347205632, 1816448730468750, 67553994410557440, 2694045224950414864, 114692890480116793344, 5191945444217181018258, 249036800000000000000000, 12617615847934310595791220
Offset: 1

Views

Author

Paul Barry, Jun 30 2003

Keywords

Crossrefs

Programs

Formula

Main subdiagonal of A085388.
a(n) = A055865(n), n>1. - R. J. Mathar, Sep 12 2008
a(n) = [x^n] x*(1 - x)/(1 - x - n*x). - Ilya Gutkovskiy, Oct 02 2017

Extensions

Name edited by Paolo Xausa, Aug 07 2025

A085388 First differences of n^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 4, 0, 1, 4, 12, 18, 8, 0, 1, 5, 20, 48, 54, 16, 0, 1, 6, 30, 100, 192, 162, 32, 0, 1, 7, 42, 180, 500, 768, 486, 64, 0, 1, 8, 56, 294, 1080, 2500, 3072, 1458, 128, 0, 1, 9, 72, 448, 2058, 6480, 12500, 12288, 4374, 256, 0, 1, 10, 90, 648
Offset: 1

Views

Author

Paul Barry, Jun 30 2003

Keywords

Comments

T(n,k) is the number of k-digit numbers in base n; n,k >= 2. - Mohammed Yaseen, Nov 11 2022

Examples

			Rows begin
  1,   0,   0,   0,   0, ...
  1,   1,   2,   4,   8, ...
  1,   2,   6,  18,  54, ...
  1,   3,  12,  48, 192, ...
  1,   4,  20, 100, 500, ...
		

Crossrefs

Diagonals include A053506, A085389, A085390.
Row-wise binomial transform is A083064.

Formula

T(n,k) = (n-1)*n^(k-1) + 0^k/n. - Corrected by Mohammed Yaseen, Nov 11 2022
T(n,0) = 1; T(n,k) = n^k - n^(k-1) for k >= 1. - Mohammed Yaseen, Nov 11 2022

Extensions

Offset corrected by Mohammed Yaseen, Nov 11 2022
Showing 1-3 of 3 results.