cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A053506 a(n) = (n-1)*n^(n-2).

Original entry on oeis.org

0, 1, 6, 48, 500, 6480, 100842, 1835008, 38263752, 900000000, 23579476910, 681091006464, 21505924728444, 737020860878848, 27246730957031250, 1080863910568919040, 45798768824157052688, 2064472028642102280192, 98646963440126439346902, 4980736000000000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

Comments

a(n) is the number of endofunctions f of [n] which interchange a pair a<->b and for all x in [n] some iterate f^k(x) = a. E.g., a(3) = 6: 1<->2<-3; 3->1<->2; 2<->3<-1; 1->2<->3; 1<->3<-2; 2->1<->3. - Len Smiley, Nov 27 2001
If offset is 0: right side of the binomial sum n-> sum( i^(i-1) * (n-i+1)^(n-i)*binomial(n, i), i=1..n) - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
a(n) is the number of birooted labeled trees on n nodes in which the two root nodes are adjacent. - N. J. A. Sloane, May 01 2018
a(n) is the number of ways to partition the complete graph K_n into two components and choose an arborescence on each component. - Harry Richman, May 11 2022

References

  • A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.36)
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Prop. 5.3.2.

Crossrefs

Cf. A001865 which is the sum of A000169 + A053506 + A065513 + A065888 + ...

Programs

  • GAP
    List([1..20], n-> (n-1)*n^(n-2)) # G. C. Greubel, May 15 2019
  • Magma
    [(n-1)*n^(n-2): n in [1..20]]; // G. C. Greubel, May 15 2019
    
  • Mathematica
    Table[(n-1)*n^(n-2), {n,20}]
  • PARI
    vector(20, n, (n-1)*n^(n-2)) \\ G. C. Greubel, Jan 18 2017
    
  • Sage
    [(n-1)*n^(n-2) for n in (1..20)] # G. C. Greubel, May 15 2019
    

Formula

E.g.f.: LambertW(-x)^2/2. - Vladeta Jovovic, Apr 07 2001
E.g.f. if offset 0: W(-x)^2/((1+W(-x))*x), W(x) Lambert's function (principal branch).
The sequence 1, 1, 6, 48, ... satisfies a(n) = (n*(n+1)^n + 0^n)/(n+1); it is the main diagonal of A085388. - Paul Barry, Jun 30 2003
a(n) = Sum_{i=1..n-1} binomial(n-1,i-1)*i^(i-2)*(n-i)^(n-i). - Dmitry Kruchinin, Oct 28 2013
If offset = 0 and a(0) = 1 then a(n) = Sum_{k=0..n} (-1)^(n-k)* binomial(-k,-n)*n^k (cf. A195242). - Peter Luschny, Apr 11 2016

A047970 Antidiagonal sums of nexus numbers (A047969).

Original entry on oeis.org

1, 2, 5, 14, 43, 144, 523, 2048, 8597, 38486, 182905, 919146, 4866871, 27068420, 157693007, 959873708, 6091057009, 40213034874, 275699950381, 1959625294310, 14418124498211, 109655727901592, 860946822538675, 6969830450679864, 58114638923638573
Offset: 0

Views

Author

Alford Arnold, Dec 11 1999

Keywords

Comments

From Lara Pudwell, Oct 23 2008: (Start)
A permutation p avoids a pattern q if it has no subsequence that is order-isomorphic to q. For example, p avoids the pattern 132 if it has no subsequence abc with a < c < b.
Barred pattern avoidance considers permutations that avoid a pattern except in a special case. Given a barred pattern q, we may form two patterns, q1 = the sequence of unbarred letters of q and q2 = the sequence of all letters of q.
A permutation p avoids barred pattern q if every instance of q1 in p is embedded in a copy of q2 in p. In other words, p avoids q1, except in the special case that a copy of q1 is a subsequence of a copy of q2.
For example, if q=5{bar 1}32{bar 4}, then q1=532 and q2 = 51324. p avoids q if every for decreasing subsequence acd of length 3 in p, one can find letters b and e so that the subsequence abcde of p has b < d < c < e < a. (End)
Number of ordered factorizations over the Gaussian polynomials.
Apparently, also the number of permutations in S_n avoiding {bar 3}{bar 1}542 (i.e., every occurrence of 542 is contained in an occurrence of a 31542). - Lara Pudwell, Apr 25 2008
With offset 1, apparently the number of sequences {b(m)} of length n of positive integers with b(1) = 1 and, for all m > 1, b(m) <= max{b(m-1) + 1, max{b(i) | 1 <= i <= m - 1}}. This sequence begins 1, 2, 5, 14, 43, 144, 523, 2048, 8597, 38486. The term 144 counts the length 6 sequence 1, 2, 3, 1, 1, 3, for instance. Contrast with the families of sequences discussed in Franklin T. Adams-Watters's comment in A005425. - Rick L. Shepherd, Jan 01 2015
a(n-1) for n >= 1 is the number of length-n restricted growth strings (RGS) [s(0), s(1), ..., s(n-1)] with s(0)=0 and s(k) <= the number of fixed points in the prefix, see example. - Joerg Arndt, Mar 08 2015
Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) != e(j) = e(k). [Martinez and Savage, 2.15] - Eric M. Schmidt, Jul 17 2017
a(n) counts all positive-integer m-tuples whose maximum is n-m+2. - Mathew Englander, Feb 28 2021
a(n) counts the cyclic permutations of [n+2] that avoid the vincular pattern 12-3-4, i.e., the pattern 1234 where the 1 and 2 are required to be adjacent. - Rupert Li, Jul 27 2021

Examples

			a(3) = 1 + 5 + 7 + 1 = 14.
From _Paul D. Hanna_, Jul 22 2014:  (Start)
G.f. A(x) = 1 + 2*x + 5*x^2 + 14*x^3 + 43*x^4 + 144*x^5 + 523*x^6 + 2048*x^7 + ...
where we have the series identity:
A(x) = (1-x)*( 1/(1-2*x) + x/(1-3*x) + x^2/(1-4*x) + x^3/(1-5*x) + x^4/(1-6*x) + x^5/(1-7*x) + x^6/(1-8*x) + ...)
is equal to
A(x) = 1/(1-x) + x/((1-x)*(1-2*x)) + x^2/((1-2*x)*(1-3*x)) + x^3/((1-3*x)*(1-4*x)) + x^4/((1-4*x)*(1-5*x)) + x^5/((1-5*x)*(1-6*x)) + x^6/((1-6*x)*(1-7*x)) + ...
and also equals
A(x) = 1/((1-x)*(1+x)) + 2!*x/((1-x)^2*(1+x)*(1+2*x)) + 3!*x^2/((1-x)^3*(1+x)*(1+2*x)*(1+3*x)) + 4!*x^3/((1-x)^4*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
(End)
From _Joerg Arndt_, Mar 08 2015: (Start)
There are a(4-1)=14 length-4 RGS as in the comment (dots denote zeros):
01:  [ . . . . ]
02:  [ . . . 1 ]
03:  [ . . 1 . ]
04:  [ . . 1 1 ]
05:  [ . 1 . . ]
06:  [ . 1 . 1 ]
07:  [ . 1 . 2 ]
08:  [ . 1 1 . ]
09:  [ . 1 1 1 ]
10:  [ . 1 1 2 ]
11:  [ . 1 2 . ]
12:  [ . 1 2 1 ]
13:  [ . 1 2 2 ]
14:  [ . 1 2 3 ]
(End)
		

Crossrefs

Antidiagonal sums of A085388 (beginning with the second antidiagonal) and A047969.
Partial sums are in A026898, A003101. First differences A112532.

Programs

  • Maple
    T := proc(n, k) option remember; local j;
        if k=n then 1
      elif k>n then 0
      else (k+1)*T(n-1, k) + add(T(n-1, j), j=k..n)
        fi end:
    A047970 := n -> T(n,0);
    seq(A047970(n), n=0..24); # Peter Luschny, May 14 2014
  • Mathematica
    a[ n_] := SeriesCoefficient[ ((1 - x) Sum[ x^k / (1 - (k + 2) x), {k, 0, n}]), {x, 0, n}]; (* Michael Somos, Jul 09 2014 *)
  • PARI
    /* From o.g.f. (Paul D. Hanna, Jul 20 2014) */
    {a(n)=polcoeff( sum(m=0, n, (m+1)!*x^m/(1-x)^(m+1)/prod(k=1, m+1, 1+k*x +x*O(x^n))), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* From o.g.f. (Paul D. Hanna, Jul 22 2014) */
    {a(n)=polcoeff( sum(m=0, n, x^m/((1-m*x)*(1-(m+1)*x +x*O(x^n)))), n)}
    for(n=0, 25, print1(a(n), ", "))
  • Sage
    def A074664():
        T = []; n = 0
        while True:
            T.append(1)
            yield T[0]
            for k in (0..n):
                T[k] = (k+1)*T[k] + add(T[j] for j in (k..n))
            n += 1
    a = A074664()
    [next(a) for n in range(25)] # Peter Luschny, May 13 2014
    

Formula

Formal o.g.f.: (1 - x)*( Sum_{n >= 0} x^n/(1 - (n + 2)*x) ). - Peter Bala, Jul 09 2014
O.g.f.: Sum_{n>=0} (n+1)! * x^n/(1-x)^(n+1) / Product_{k=1..n+1} (1 + k*x). - Paul D. Hanna, Jul 20 2014
O.g.f.: Sum_{n>=0} x^n / ( (1 - n*x) * (1 - (n+1)*x) ). - Paul D. Hanna, Jul 22 2014
From Mathew Englander, Feb 28 2021: (Start)
a(n) = A089246(n+2,0) = A242431(n,0).
a(n) = Sum_{m = 1..n+1} Sum_{i = 0..m-1} binomial(m,i) * (n-m+1)^i.
a(n) = 1 + Sum_{i = 0..n} i * (i+1)^(n-i). (End)
a(n) ~ sqrt(2*Pi*n / (w*(1+w))) * (1 + n/w)^(1 + n - n/w), where w = LambertW(exp(1)*n). - Vaclav Kotesovec, Jun 10 2025

A085389 a(1) = 1; for n >= 2, a(n) = (n*(n+1)^(n-1))/(n+1).

Original entry on oeis.org

1, 2, 12, 100, 1080, 14406, 229376, 4251528, 90000000, 2143588810, 56757583872, 1654301902188, 52644347205632, 1816448730468750, 67553994410557440, 2694045224950414864, 114692890480116793344, 5191945444217181018258, 249036800000000000000000, 12617615847934310595791220
Offset: 1

Views

Author

Paul Barry, Jun 30 2003

Keywords

Crossrefs

Programs

Formula

Main subdiagonal of A085388.
a(n) = A055865(n), n>1. - R. J. Mathar, Sep 12 2008
a(n) = [x^n] x*(1 - x)/(1 - x - n*x). - Ilya Gutkovskiy, Oct 02 2017

Extensions

Name edited by Paolo Xausa, Aug 07 2025

A085390 a(n) = (n(n+1)^(n-2)+0^(n-2))/(n+1).

Original entry on oeis.org

1, 3, 20, 180, 2058, 28672, 472392, 9000000, 194871710, 4729798656, 127253992476, 3760310514688, 121096582031250, 4222124650659840, 158473248526494992, 6371827248895377408, 273260286537746369382, 12451840000000000000000
Offset: 2

Views

Author

Paul Barry, Jun 30 2003

Keywords

Comments

A diagonal of square array A085388.

Crossrefs

Showing 1-4 of 4 results.