A053506
a(n) = (n-1)*n^(n-2).
Original entry on oeis.org
0, 1, 6, 48, 500, 6480, 100842, 1835008, 38263752, 900000000, 23579476910, 681091006464, 21505924728444, 737020860878848, 27246730957031250, 1080863910568919040, 45798768824157052688, 2064472028642102280192, 98646963440126439346902, 4980736000000000000000000
Offset: 1
- A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.36)
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Prop. 5.3.2.
-
List([1..20], n-> (n-1)*n^(n-2)) # G. C. Greubel, May 15 2019
-
[(n-1)*n^(n-2): n in [1..20]]; // G. C. Greubel, May 15 2019
-
Table[(n-1)*n^(n-2), {n,20}]
-
vector(20, n, (n-1)*n^(n-2)) \\ G. C. Greubel, Jan 18 2017
-
[(n-1)*n^(n-2) for n in (1..20)] # G. C. Greubel, May 15 2019
A047970
Antidiagonal sums of nexus numbers (A047969).
Original entry on oeis.org
1, 2, 5, 14, 43, 144, 523, 2048, 8597, 38486, 182905, 919146, 4866871, 27068420, 157693007, 959873708, 6091057009, 40213034874, 275699950381, 1959625294310, 14418124498211, 109655727901592, 860946822538675, 6969830450679864, 58114638923638573
Offset: 0
a(3) = 1 + 5 + 7 + 1 = 14.
From _Paul D. Hanna_, Jul 22 2014: (Start)
G.f. A(x) = 1 + 2*x + 5*x^2 + 14*x^3 + 43*x^4 + 144*x^5 + 523*x^6 + 2048*x^7 + ...
where we have the series identity:
A(x) = (1-x)*( 1/(1-2*x) + x/(1-3*x) + x^2/(1-4*x) + x^3/(1-5*x) + x^4/(1-6*x) + x^5/(1-7*x) + x^6/(1-8*x) + ...)
is equal to
A(x) = 1/(1-x) + x/((1-x)*(1-2*x)) + x^2/((1-2*x)*(1-3*x)) + x^3/((1-3*x)*(1-4*x)) + x^4/((1-4*x)*(1-5*x)) + x^5/((1-5*x)*(1-6*x)) + x^6/((1-6*x)*(1-7*x)) + ...
and also equals
A(x) = 1/((1-x)*(1+x)) + 2!*x/((1-x)^2*(1+x)*(1+2*x)) + 3!*x^2/((1-x)^3*(1+x)*(1+2*x)*(1+3*x)) + 4!*x^3/((1-x)^4*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
(End)
From _Joerg Arndt_, Mar 08 2015: (Start)
There are a(4-1)=14 length-4 RGS as in the comment (dots denote zeros):
01: [ . . . . ]
02: [ . . . 1 ]
03: [ . . 1 . ]
04: [ . . 1 1 ]
05: [ . 1 . . ]
06: [ . 1 . 1 ]
07: [ . 1 . 2 ]
08: [ . 1 1 . ]
09: [ . 1 1 1 ]
10: [ . 1 1 2 ]
11: [ . 1 2 . ]
12: [ . 1 2 1 ]
13: [ . 1 2 2 ]
14: [ . 1 2 3 ]
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- G. E. Andrews, The Theory of Partitions, 1976, page 242 table of Gaussian polynomials.
- David Callan, The number of bar(31)542-avoiding permutations, arXiv:1111.3088 [math.CO], 2011.
- Rupert Li, Vincular Pattern Avoidance on Cyclic Permutations, arXiv:2107.12353 [math.CO], 2021.
- Zhicong Lin and Sherry H. F. Yan, Vincular patterns in inversion sequences, Applied Mathematics and Computation (2020), Vol. 364, 124672.
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Lara Pudwell, Enumeration Schemes for Pattern-Avoiding Words and Permutations, Ph. D. Dissertation, Math. Dept., Rutgers University, May 2008.
- Lara Pudwell, Enumeration schemes for permutations avoiding barred patterns, El. J. Combinat. 17 (1) (2010) R29.
- Eric Weisstein's World of Mathematics, Nexus Number
- Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
Antidiagonal sums of
A085388 (beginning with the second antidiagonal) and
A047969.
-
T := proc(n, k) option remember; local j;
if k=n then 1
elif k>n then 0
else (k+1)*T(n-1, k) + add(T(n-1, j), j=k..n)
fi end:
A047970 := n -> T(n,0);
seq(A047970(n), n=0..24); # Peter Luschny, May 14 2014
-
a[ n_] := SeriesCoefficient[ ((1 - x) Sum[ x^k / (1 - (k + 2) x), {k, 0, n}]), {x, 0, n}]; (* Michael Somos, Jul 09 2014 *)
-
/* From o.g.f. (Paul D. Hanna, Jul 20 2014) */
{a(n)=polcoeff( sum(m=0, n, (m+1)!*x^m/(1-x)^(m+1)/prod(k=1, m+1, 1+k*x +x*O(x^n))), n)}
for(n=0, 25, print1(a(n), ", "))
-
/* From o.g.f. (Paul D. Hanna, Jul 22 2014) */
{a(n)=polcoeff( sum(m=0, n, x^m/((1-m*x)*(1-(m+1)*x +x*O(x^n)))), n)}
for(n=0, 25, print1(a(n), ", "))
-
def A074664():
T = []; n = 0
while True:
T.append(1)
yield T[0]
for k in (0..n):
T[k] = (k+1)*T[k] + add(T[j] for j in (k..n))
n += 1
a = A074664()
[next(a) for n in range(25)] # Peter Luschny, May 13 2014
A085389
a(1) = 1; for n >= 2, a(n) = (n*(n+1)^(n-1))/(n+1).
Original entry on oeis.org
1, 2, 12, 100, 1080, 14406, 229376, 4251528, 90000000, 2143588810, 56757583872, 1654301902188, 52644347205632, 1816448730468750, 67553994410557440, 2694045224950414864, 114692890480116793344, 5191945444217181018258, 249036800000000000000000, 12617615847934310595791220
Offset: 1
A085390
a(n) = (n(n+1)^(n-2)+0^(n-2))/(n+1).
Original entry on oeis.org
1, 3, 20, 180, 2058, 28672, 472392, 9000000, 194871710, 4729798656, 127253992476, 3760310514688, 121096582031250, 4222124650659840, 158473248526494992, 6371827248895377408, 273260286537746369382, 12451840000000000000000
Offset: 2
Showing 1-4 of 4 results.
Comments