cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085473 a(n) = 6*n^2 + 3*n + 1.

Original entry on oeis.org

1, 10, 31, 64, 109, 166, 235, 316, 409, 514, 631, 760, 901, 1054, 1219, 1396, 1585, 1786, 1999, 2224, 2461, 2710, 2971, 3244, 3529, 3826, 4135, 4456, 4789, 5134, 5491, 5860, 6241, 6634, 7039, 7456, 7885, 8326, 8779, 9244, 9721, 10210, 10711, 11224, 11749, 12286, 12835
Offset: 0

Views

Author

Paul Barry, Jul 01 2003

Keywords

Comments

T(n,3) of A085475.
Sequence found by reading the line from 1, in the direction 1, 10,..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 09 2011
Sums of the triangular numbers from A000217(2*n-1) to A000217(2*n+1), with A000217(-1) = 0. - Bruno Berselli, Sep 04 2018

Crossrefs

Programs

  • Mathematica
    Table[3 n (2 n + 1) + 1, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *)
    Table[Binomial[2 n + 3, 3] - Binomial[2 n, 3], {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 10, 31}, 50] (* Harvey P. Dale, Nov 15 2011 *)
  • PARI
    x='x+O('x^50); Vec((1+7*x+4*x^2)/(1-x)^3) \\ G. C. Greubel, Jun 13 2017
    
  • PARI
    for(n=0,25, print1(6*n^2 + 3*n + 1, ", ")) \\ G. C. Greubel, Jun 13 2017

Formula

G.f.: (1 + 7*x + 4*x^2)/(1 - x)^3.
a(n) = binomial(2*n+3,3) - binomial(2*n,3).
a(n) = 12*n + a(n-1) - 3 for n > 0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
a(0)=1, a(1)=10, a(2)=31; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Nov 15 2011
E.g.f.: exp(x)*(1 + 9*x + 6*x^2). - Elmo R. Oliveira, Oct 18 2024