cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085490 Number of pairs with two different elements which can be obtained by selecting unique elements from two sets with n+1 and n^2 elements respectively and n common elements.

Original entry on oeis.org

0, 1, 10, 33, 76, 145, 246, 385, 568, 801, 1090, 1441, 1860, 2353, 2926, 3585, 4336, 5185, 6138, 7201, 8380, 9681, 11110, 12673, 14376, 16225, 18226, 20385, 22708, 25201, 27870, 30721, 33760, 36993, 40426, 44065, 47916, 51985, 56278, 60801, 65560, 70561, 75810, 81313
Offset: 0

Views

Author

Polina S. Dolmatova (polinasport(AT)mail.ru), Aug 15 2003

Keywords

Examples

			a(2) = 10 because we can write a(2) = 2^3 + 2^2 - 2 = 10.
		

Crossrefs

Cf. A270109.

Programs

  • Magma
    [n^3+n^2-n: n in [0..50]]; // Vincenzo Librandi, Jun 22 2017
  • Maple
    a:=n->sum(n*k, k=0..n):seq(a(n)+sum(n*k, k=2..n), n=0..30); # Zerinvary Lajos, Jun 10 2008
    a:=n->sum(-2+sum(2+sum(2, j=1..n),j=1..n),j=1..n):seq(a(n)/2,n=0..40);# Zerinvary Lajos, Dec 06 2008
    seq(n^3+n^2-n, n=0..100); # Robert Israel, Dec 05 2014
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 10, 33}, 60] (* Vincenzo Librandi, Jun 22 2017 *)

Formula

a(n) = n^3 + n^2 - n = n*A028387(n-1).
a(n) = A081437(n-1), n>0. - R. J. Mathar, Sep 12 2008
G.f.: x*(1+6*x-x^2)/(1-x)^4. - Robert Israel, Dec 05 2014
E.g.f.: x*(1+4*x+x^2)*exp(x). - Robert Israel, Dec 05 2014
For q a prime power, a(q) is the number of pairs of commuting nilpotent 2*2 matrices with coefficients in GL(q). (Proof: the zero matrix commutes with all q^2 nilpotent matrices, each of the remaining q^2-1 nilpotent matrices commutes with exactly q nilpotent matrices.) - Mark Wildon, Jun 18 2017