A143326
Table T(n,k) by antidiagonals. T(n,k) is the number of primitive (=aperiodic) k-ary words with length less than or equal to n (n,k >= 1).
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 4, 9, 10, 1, 5, 16, 33, 22, 1, 6, 25, 76, 105, 52, 1, 7, 36, 145, 316, 345, 106, 1, 8, 49, 246, 745, 1336, 1041, 232, 1, 9, 64, 385, 1506, 3865, 5356, 3225, 472, 1, 10, 81, 568, 2737, 9276, 19345, 21736, 9705, 976, 1, 11, 100, 801, 4600, 19537, 55686
Offset: 1
T(2,3) = 9, because there are 9 primitive words of length less than or equal to 2 over 3-letter alphabet {a,b,c}: a, b, c, ab, ac, ba, bc, ca, cb; note that the non-primitive words aa, bb and cc don't belong to the list; secondly note that the words in the list need not be Lyndon words, for example ba can be derived from ab by a cyclic rotation of the positions.
Table begins:
1, 2, 3, 4, 5, 6, 7, 8, ...
1, 4, 9, 16, 25, 36, 49, 64, ...
1, 10, 33, 76, 145, 246, 385, 568, ...
1, 22, 105, 316, 745, 1506, 2737, 4600, ...
1, 52, 345, 1336, 3865, 9276, 19537, 37360, ...
1, 106, 1041, 5356, 19345, 55686, 136801, 298936, ...
1, 232, 3225, 21736, 97465, 335616, 960337, 2396080, ...
1, 472, 9705, 87016, 487465, 2013936, 6722737, 19169200, ...
...
From _Wolfdieter Lang_, Feb 01 2014: (Start)
The triangle Tri(n,m) := T(m,n-(m-1)) begins:
n\m 1 2 3 4 5 6 7 8 9 10 ...
1: 1
2: 2 1
3: 3 4 1
4: 4 9 10 1
5: 5 16 33 22 1
6: 6 25 76 105 52 1
7: 7 36 145 316 345 106 1
8: 8 49 246 745 1336 1041 232 1
9: 9 64 385 1506 3865 5356 3225 472 1
10: 10 81 568 2737 9276 19345 21736 9705 976 1
...
For the columns see A000027, A000290, A081437, ... (End)
-
with(numtheory):
f0:= proc(n) option remember;
unapply(k^n-add(f0(d)(k), d=divisors(n) minus {n}), k)
end:
g0:= proc(n) option remember; unapply(add(f0(j)(x), j=1..n), x) end:
T:= (n, k)-> g0(n)(k):
seq(seq(T(n, 1+d-n), n=1..d), d=1..12);
-
f0[n_] := f0[n] = Function[k, k^n-Sum[f0[d][k], {d, Divisors[n] // Most}]]; g0[n_] := g0[n] = Function[x, Sum[f0[j][x], {j, 1, n}]]; T[n_, k_] := g0[n][k]; Table[T[n, 1+d-n], {d, 1, 12}, {n, 1, d}]//Flatten (* Jean-François Alcover, Feb 12 2014, translated from Maple *)
A270109
a(n) = n^3 + (n+1)*(n+2).
Original entry on oeis.org
2, 7, 20, 47, 94, 167, 272, 415, 602, 839, 1132, 1487, 1910, 2407, 2984, 3647, 4402, 5255, 6212, 7279, 8462, 9767, 11200, 12767, 14474, 16327, 18332, 20495, 22822, 25319, 27992, 30847, 33890, 37127, 40564, 44207, 48062, 52135, 56432, 60959, 65722, 70727, 75980, 81487, 87254
Offset: 0
Bruno Berselli, Mar 11 2016, at the suggestion of Giuseppe Amoruso in BASE Cinque forum
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- MathsSmart, Number pattern and Puzzle - 7, 20, 47, 94, 167.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Cf.
A027444: numbers of the form n^3+n*(n+1);
A085490: numbers of the form n^3+(n-1)*n.
Cf.
A008865: numbers of the form n+(n+1)*(n+2);
A130883: numbers of the form n^2+(n+1)*(n+2).
-
[n^3+(n+1)*(n+2): n in [0..50]];
-
Table[n^3 + (n + 1) (n + 2), {n, 0, 50}]
-
makelist(n^3+(n+1)*(n+2), n, 0, 50);
-
vector(50, n, n--; n^3+(n+1)*(n+2))
-
[n^3+(n+1)*(n+2) for n in (0..50)]
A247236
Triangle read by rows: T(n,k) appears in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} T(n,k)*(x+k)^k.
Original entry on oeis.org
1, -1, 2, -1, -10, 3, -1, 26, -33, 4, -1, -54, 207, -76, 5, -1, 96, -993, 824, -145, 6, -1, -156, 4047, -6736, 2375, -246, 7, -1, 236, -14769, 46184, -28985, 5634, -385, 8, -1, -340, 49743, -280408, 293575, -95166, 11711, -568, 9, -1, 470, -157617, 1556672, -2609465, 1322334, -260449, 22112, -801, 10
Offset: 0
From _Wolfdieter Lang_, Jan 12 2015: (Start)
The triangle T(n,k) starts:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: -1 2
2: -1 -10 3
3: -1 26 -33 4
4: -1 -54 207 -76 5
5: -1 96 -993 824 -145 6
6: -1 -156 4047 -6736 2375 -246 7
7: -1 236 -14769 46184 -28985 5634 -385 8
8: -1 -340 49743 -280408 293575 -95166 11711 -568 9
9: -1 470 -157617 1556672 -2609465 1322334 -260449 22112 -801 10
... Reformatted.
---------------------------------------------------------------------
n=3: 1 + 2*x + 3*x^2 + 4*x^3 = -1*(x+0)^0 + 26*(x+1)^1 - 33*(x+2)^2 + 4*(x+3)^3. (End)
-
T(n,k)=(k+1)-sum(i=k+1,n,i^(i-k)*binomial(i,k)*T(n,i))
for(n=0,10,for(k=0,n,print1(T(n,k),", ")))
A214731
a(n) = n^3 - 2*n^2 - 1.
Original entry on oeis.org
-2, -1, 8, 31, 74, 143, 244, 383, 566, 799, 1088, 1439, 1858, 2351, 2924, 3583, 4334, 5183, 6136, 7199, 8378, 9679, 11108, 12671, 14374, 16223, 18224, 20383, 22706, 25199, 27868, 30719, 33758, 36991, 40424, 44063, 47914, 51983, 56276, 60799, 65558, 70559
Offset: 1
Similar sequences:
A152015 (of the type m^3+2m^2-1),
A081437 (m^3-2m^2+1).
Showing 1-4 of 4 results.
Comments