A085496 Number of ways to write prime(n) as sum of distinct divisors of prime(n)+1.
0, 1, 1, 1, 2, 0, 1, 1, 5, 3, 1, 0, 2, 0, 10, 1, 31, 0, 0, 26, 0, 6, 23, 20, 0, 0, 1, 13, 0, 0, 1, 15, 0, 14, 9, 0, 0, 0, 190, 0, 713, 0, 42, 0, 7, 9, 0, 9, 6, 0, 6, 2148, 0, 509, 0, 120, 109, 1, 0, 0, 0, 4, 6, 100, 0, 0, 0, 0, 2, 4, 0, 21897, 1, 0, 3, 85, 79, 0, 0, 0, 19172, 0, 1130
Offset: 1
Keywords
Examples
n=5, divisors of A000040(5)+1=11+1=12 that are not greater 11: {1,2,3,4,6}, 11=6+4+1=6+3+2, therefore a(5)=2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..5000
Programs
-
Maple
b:= proc(n, i) option remember; global l; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+ `if`(l[i]>n, 0, b(n-l[i], i-1)))) end: a:= proc(n) global l; local p; forget(b); p:= ithprime(n); l:= sort([numtheory[divisors](p+1)[]]); b(p, nops(l)-1) end: seq(a(n), n=1..50); # Alois P. Heinz, May 01 2012
-
Mathematica
Count[Total/@Subsets[Most[Divisors[Prime[#]+1]]],Prime[#]]&/@Range[90] (* Harvey P. Dale, Jan 31 2016 *)
Comments