A085528 a(n) = (2*n+1)^(n+1).
1, 9, 125, 2401, 59049, 1771561, 62748517, 2562890625, 118587876497, 6131066257801, 350277500542221, 21914624432020321, 1490116119384765625, 109418989131512359209, 8629188747598184440949, 727423121747185263828481, 65273511648264442971824673
Offset: 0
References
- Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups. Graduate Texts in Mathematics, 231. Springer, New York, 2005.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
Programs
-
GAP
List([0..20], n-> (2*n+1)^(n+1)); # G. C. Greubel, Sep 03 2019
-
Magma
[(2*n+1)^(n+1): n in [0..20]]; // Vincenzo Librandi, May 04 2011
-
Maple
seq((2*n+1)^(n+1), n=0..20); # G. C. Greubel, Sep 03 2019
-
Mathematica
Table[(2*n+1)^(n+1), {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 05 2009, modified by G. C. Greubel, Sep 03 2019 *)
-
PARI
vector(20, n, (2*n-1)^n) \\ G. C. Greubel, Sep 03 2019
-
Sage
[(2*n+1)^(n+1) for n in (0..20)] # G. C. Greubel, Sep 03 2019
Formula
From Peter Bala, Aug 06 2012: (Start)
E.g.f.: d/dx{(2*x/T(2*x))^(1/2)*1/(1 - T(2*x))} = 1 + 9*x + 125*x^2/2! + ..., where T(x) is the tree function sum {n >= 1} n^(n-1)*x^n/n! of A000169.
For r = 0, 1, 2, ... the e.g.f. for the sequence (2*n+1)^(n+r) can be expressed in terms of the function U(z) = sum {n >= 0} (2*n+1)^(n-1)*z^(2*n+1)/(2^n*n!). See A214406 for details. In the present case, r = 1, and the resulting e.g.f. is 1/z*U(z)*(1 + U(z)^2 )/(1 - U(z)^2)^3 taken at z = sqrt(2*x).
(End)
Sum_{n>=0} (-1)^n/a(n) = A253299. - Amiram Eldar, Jun 25 2021
Comments