Original entry on oeis.org
0, 1, 2, 16, 162, 3600, 147456, 12320100, 2058386904, 701841817600, 488286500625000, 696425232679321600, 2038348954317776486400, 12259459134020160144810000, 151596002479762016373851690400, 3855806813438155578522841251840000
Offset: 0
a(0) = 0 + 0 = 0
a(1) = (0+1) * (1+0) = 1
a(2) = (0+1) * (1+1) * (1+0) = 2
a(3) = (0+2) * (1+1) * (1+1) * (2+0) = 16
As noted above, a(2*k+1) is a square for k>=0. The first 5 squares are 1, 16, 3600, 12320100, 701841817600, with corresponding square roots 1, 4, 60, 3510, 837760.
If n = 2*k, then s**s(n) has the form 2*F(k)*m^2, where m is an integer and F(k) is the k-th Fibonacci number; e.g., a(6) = 2*F(3)*(192)^2.
-
a:= n-> (F-> mul(F(n-j)+F(j), j=0..n))(combinat[fibonacci]):
seq(a(n), n=0..15); # Alois P. Heinz, Aug 02 2024
-
s[n_] := Fibonacci[n]; t[n_] := Fibonacci[n];
u[n_] := Product[s[k] + t[n - k], {k, 0, n}];
Table[u[n], {n, 0, 20}]
-
a(n)=prod(k=0, n, fibonacci(k) + fibonacci(n-k)) \\ Andrew Howroyd, Jul 31 2024
A085527
a(n) = (2n+1)^n.
Original entry on oeis.org
1, 3, 25, 343, 6561, 161051, 4826809, 170859375, 6975757441, 322687697779, 16679880978201, 952809757913927, 59604644775390625, 4052555153018976267, 297558232675799463481, 23465261991844685929951, 1977985201462558877934081, 177482997121587371826171875
Offset: 0
- Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups. Graduate Texts in Mathematics, 231. Springer, New York, 2005.
- G. C. Greubel, Table of n, a(n) for n = 0..350
- Karola Mészáros, Labeling the Regions of the Type C_n Shi Arrangement, The Electronic Journal of Combinatorics, vol. 20, no. 2, (2013).
- Zhi-Wei Sun, Fedor Petrov, A surprising identity, MathOverflow, Jan 17 2019.
-
List([0..20],n->(2*n+1)^n); # Muniru A Asiru, Dec 05 2018
-
[(2*n+1)^n: n in [0..20]]; // Wesley Ivan Hurt, Mar 01 2015
-
A085527:=n->(2*n+1)^n: seq(A085527(n), n=0..20); # Wesley Ivan Hurt, Mar 01 2015
-
Table[(2 n + 1)^n, {n, 0, 20}] (* Wesley Ivan Hurt, Mar 01 2015 *)
-
a(n)=(2*n+1)^n;
-
def A085527(n): return ((n<<1)|1)**n # Chai Wah Wu, Nov 10 2024
A099753
a(n) = (2*n+1)^(n+2).
Original entry on oeis.org
1, 27, 625, 16807, 531441, 19487171, 815730721, 38443359375, 2015993900449, 116490258898219, 7355827511386641, 504036361936467383, 37252902984619140625, 2954312706550833698643, 250246473680347348787521, 22550116774162743178682911, 2154025884392726618070214209
Offset: 0
Kari Lajunen (Kari.Lajunen(AT)Welho.com), Nov 11 2004
-
List([0..30], n-> (2*n+1)^(n+2)); # G. C. Greubel, Sep 03 2019
-
[(2*n+1)^(n+2): n in [0..30]]; // G. C. Greubel, Sep 03 2019
-
seq((2*n+1)^(n+2), n=0..30); # G. C. Greubel, Sep 03 2019
-
Table[(2*n+1)^(n+2), {n,0,30}] (* G. C. Greubel, Sep 03 2019 *)
-
vector(30, n, (2*n-1)^(n+1)) \\ G. C. Greubel, Sep 03 2019
-
[(2*n+1)^(n+2) for n in (0..30)] # G. C. Greubel, Sep 03 2019
A085529
a(n) = (2n+1)^(2n+1).
Original entry on oeis.org
1, 27, 3125, 823543, 387420489, 285311670611, 302875106592253, 437893890380859375, 827240261886336764177, 1978419655660313589123979, 5842587018385982521381124421, 20880467999847912034355032910567, 88817841970012523233890533447265625, 443426488243037769948249630619149892803
Offset: 0
Cf.
A000312,
A005408,
A016754,
A085527,
A085528,
A085530,
A085531,
A085532,
A085533,
A085534,
A085535.
A165156
n^(2*n-1)-(2*n-1)^n.
Original entry on oeis.org
0, -1, 118, 13983, 1894076, 361025495, 96826261890, 35181809198207, 16677063111790072, 9999993868933742199, 7400249593980659558990, 6624737245034612579099807, 7056410013376700546645974068
Offset: 1
-
p=1;lst={};Do[AppendTo[lst,n^p-p^n];p=p+2,{n,4!}];lst
Table[n^(2n-1)-(2n-1)^n,{n,20}] (* Harvey P. Dale, Aug 10 2023 *)
A364870
Array read by ascending antidiagonals: A(n, k) = (n + k)^n, with k >= 0.
Original entry on oeis.org
1, 1, 1, 4, 2, 1, 27, 9, 3, 1, 256, 64, 16, 4, 1, 3125, 625, 125, 25, 5, 1, 46656, 7776, 1296, 216, 36, 6, 1, 823543, 117649, 16807, 2401, 343, 49, 7, 1, 16777216, 2097152, 262144, 32768, 4096, 512, 64, 8, 1, 387420489, 43046721, 4782969, 531441, 59049, 6561, 729, 81, 9, 1
Offset: 0
The array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
4, 9, 16, 25, 36, 49, ...
27, 64, 125, 216, 343, 512, ...
256, 625, 1296, 2401, 4096, 6561, ...
3125, 7776, 16807, 32768, 59049, 100000, ...
...
Cf.
A000012 (n=0),
A000169,
A000272,
A000312 (k=0),
A007830 (k=3),
A008785 (k=4),
A008786 (k=5),
A008787 (k=6),
A031973 (antidiagonal sums),
A052746 (2nd superdiagonal),
A052750,
A062971 (main diagonal),
A079901 (read by descending antidiagonals),
A085527 (1st superdiagonal),
A085528 (1st subdiagonal),
A085532,
A099753.
-
A[n_,k_]:=(n+k)^n; Join[{1},Table[A[n-k,k],{n,9},{k,0,n}]]//Flatten
Showing 1-6 of 6 results.
Comments