cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A274265 a(n) = (3*n - 1)^(n-1).

Original entry on oeis.org

1, 5, 64, 1331, 38416, 1419857, 64000000, 3404825447, 208827064576, 14507145975869, 1125899906842624, 96549157373046875, 9065737908494995456, 925103102315013629321, 101938319743841411792896, 12063348350820368238715343, 1525878906250000000000000000
Offset: 1

Views

Author

Peter Bala, Jun 19 2016

Keywords

Comments

Compare with A052752.

Crossrefs

Programs

Formula

E.g.f. A(x) = 1 - exp(-1/3*T(3*x)) = x + 5*x^2/2! + 8^2*x^3/3! + 11^3*x^4/4! + 14^4*x^5/5! + ..., where T(x) = Sum_{n >= 1} n^(n-1)*x^n/n! is Euler's tree function - see A000169.
A(x) = series reversion( (1 - x)^3*log(1/(1 - x)) ). See A274266.
1 - A(x) = exp(-x/(1 - A(x))^3) = exp(-x/(exp(-3*x/(exp(-3*x/ ...))))).
1 - A(-x*exp(3*x)) = exp(x) = 1/(1 - A(x*exp(-3*x))).
1/(1 - A(x)) = Sum_{n >= 0} (3*n + 1)^(n-1)*x^n/n!, the e.g.f. for A052752.

A085528 a(n) = (2*n+1)^(n+1).

Original entry on oeis.org

1, 9, 125, 2401, 59049, 1771561, 62748517, 2562890625, 118587876497, 6131066257801, 350277500542221, 21914624432020321, 1490116119384765625, 109418989131512359209, 8629188747598184440949, 727423121747185263828481, 65273511648264442971824673
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2003

Keywords

Comments

a(n) is the number of polynomials of degree at most n with integer coefficients all having absolute value <= n.
a(n-1) is the number of nodes in the canonical automaton for the affine Weyl group of type D_n. - Tom Edgar, May 12 2016

References

  • Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups. Graduate Texts in Mathematics, 231. Springer, New York, 2005.

Crossrefs

Programs

Formula

From Peter Bala, Aug 06 2012: (Start)
E.g.f.: d/dx{(2*x/T(2*x))^(1/2)*1/(1 - T(2*x))} = 1 + 9*x + 125*x^2/2! + ..., where T(x) is the tree function sum {n >= 1} n^(n-1)*x^n/n! of A000169.
For r = 0, 1, 2, ... the e.g.f. for the sequence (2*n+1)^(n+r) can be expressed in terms of the function U(z) = sum {n >= 0} (2*n+1)^(n-1)*z^(2*n+1)/(2^n*n!). See A214406 for details. In the present case, r = 1, and the resulting e.g.f. is 1/z*U(z)*(1 + U(z)^2 )/(1 - U(z)^2)^3 taken at z = sqrt(2*x).
(End)
Sum_{n>=0} (-1)^n/a(n) = A253299. - Amiram Eldar, Jun 25 2021

A088961 Zigzag matrices listed entry by entry.

Original entry on oeis.org

3, 5, 5, 5, 10, 14, 14, 7, 14, 21, 21, 7, 21, 35, 42, 48, 27, 9, 48, 69, 57, 36, 27, 57, 78, 84, 9, 36, 84, 126, 132, 165, 110, 44, 11, 165, 242, 209, 121, 55, 110, 209, 253, 220, 165, 44, 121, 220, 297, 330, 11, 55, 165, 330, 462
Offset: 1

Views

Author

Paul Boddington, Oct 28 2003

Keywords

Comments

For each n >= 1 the n X n matrix Z(n) is constructed as follows. The i-th row of Z(n) is obtained by generating a hexagonal array of numbers with 2*n+1 rows, 2*n numbers in the odd numbered rows and 2*n+1 numbers in the even numbered rows. The first row is all 0's except for two 1's in the i-th and the (2*n+1-i)th positions. The remaining rows are generated using the same rule for generating Pascal's triangle. The i-th row of Z(n) then consists of the first n numbers in the bottom row of our array.
For example the top row of Z(2) is [5,5], found from the array:
. 1 0 0 1
1 1 0 1 1
. 2 1 1 2
2 3 2 3 2
. 5 5 5 5
Zigzag matrices have remarkable properties. Here is a selection:
1) Z(n) is symmetric.
2) det(Z(n)) = A085527(n).
3) tr(Z(n)) = A033876(n-1).
4) If 2*n+1 is a power of a prime p then all entries of Z(n) are multiples of p.
5) If 4*n+1 is a power of a prime p then the dot product of any two distinct rows of Z(n) is a multiple of p.
6) It is always possible to move from the bottom left entry of Z(n) to the top right entry using only rightward and upward moves and visiting only odd numbers.
A001700(n) = last term of last row of Z(n): a(A000330(n-1)) = A001700(n); A230585(n) = first term of first row of Z(n): a(A056520(n-1)) = A230585(n); A051417(n) = greatest common divisor of entries of Z(n). - Reinhard Zumkeller, Oct 25 2013

Examples

			The first five values are 3, 5, 5, 5, 10 because the first two zigzag matrices are [[3]] and [[5,5],[5,10]].
		

Crossrefs

Programs

  • Haskell
    a088961 n = a088961_list !! (n-1)
    a088961_list = concat $ concat $ map f [1..] where
       f x = take x $ g (take x (1 : [0,0..])) where
         g us = (take x $ g' us) : g (0 : init us)
         g' vs = last $ take (2 * x + 1) $
                        map snd $ iterate h (0, vs ++ reverse vs)
       h (p,ws) = (1 - p, drop p $ zipWith (+) ([0] ++ ws) (ws ++ [0]))
    -- Reinhard Zumkeller, Oct 25 2013
  • Mathematica
    Flatten[Table[Binomial[2n,n+j-i]-Binomial[2n,n+i+j]+ Binomial[2n, 3n+1-i-j], {n,5},{i,n},{j,n}]] (* Harvey P. Dale, Dec 15 2011 *)

Formula

The ij entry of Z(n) is binomial(2*n, n+j-i) - binomial(2*n, n+i+j) + binomial(2*n, 3*n+1-i-j).

A085530 a(n) = (2n+1)^(2n).

Original entry on oeis.org

1, 9, 625, 117649, 43046721, 25937424601, 23298085122481, 29192926025390625, 48661191875666868481, 104127350297911241532841, 278218429446951548637196401, 907846434775996175406740561329, 3552713678800500929355621337890625, 16423203268260658146231467800709255289
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2003

Keywords

Comments

a(n)/4^n is the square of the determinant of a (2*n+1) X (2*n+1) matrix with elements M(j,k) = cos(Pi*j*k/n). See the MathOverflow link. - Hugo Pfoertner, Sep 18 2021

Crossrefs

Programs

Formula

From Mathew Englander, Aug 14 2020: (Start)
a(n) = A085527(n)^2.
a(n) = A085529(n)/(2*n + 1).
(End)
From Alois P. Heinz, Aug 14 2020: (Start)
a(n) = A016754(n)^n.
a(n) = A005408(n)^A005843(n). (End)

A099753 a(n) = (2*n+1)^(n+2).

Original entry on oeis.org

1, 27, 625, 16807, 531441, 19487171, 815730721, 38443359375, 2015993900449, 116490258898219, 7355827511386641, 504036361936467383, 37252902984619140625, 2954312706550833698643, 250246473680347348787521, 22550116774162743178682911, 2154025884392726618070214209
Offset: 0

Views

Author

Kari Lajunen (Kari.Lajunen(AT)Welho.com), Nov 11 2004

Keywords

Crossrefs

Programs

  • GAP
    List([0..30], n-> (2*n+1)^(n+2)); # G. C. Greubel, Sep 03 2019
  • Magma
    [(2*n+1)^(n+2): n in [0..30]]; // G. C. Greubel, Sep 03 2019
    
  • Maple
    seq((2*n+1)^(n+2), n=0..30); # G. C. Greubel, Sep 03 2019
  • Mathematica
    Table[(2*n+1)^(n+2), {n,0,30}] (* G. C. Greubel, Sep 03 2019 *)
  • PARI
    vector(30, n, (2*n-1)^(n+1)) \\ G. C. Greubel, Sep 03 2019
    
  • Sage
    [(2*n+1)^(n+2) for n in (0..30)] # G. C. Greubel, Sep 03 2019
    

Formula

From Peter Bala, Aug 06 2012: (Start)
E.g.f.: d^2/dx^2{(2*x/T(2*x))^(3/2)*1/(1 - T(2*x))} = 1 + 27*x + 625*x^2/2! + ..., where T(x) is the tree function sum {n >=1} n^(n-1)*x^n/n! of A000169.
For r = 0, 1, 2, ..., the e.g.f. for the sequence (2*n+1)^(n+r) can be expressed in terms of the function U(z) = sum {n >= 0} (2*n+1)^(n-1)*z^(2*n+1)/(2^n*n!). See A214406 for details. In the present case, r = 2, and the resulting e.g.f. is 1/z*U(z)*(1 + 8*U(z)^2 + 3*U(z)^4)/(1 - U(z)^2)^5 taken at z = sqrt(2*x).
(End)

Extensions

Terms a(13) onward added by G. C. Greubel, Sep 03 2019

A085529 a(n) = (2n+1)^(2n+1).

Original entry on oeis.org

1, 27, 3125, 823543, 387420489, 285311670611, 302875106592253, 437893890380859375, 827240261886336764177, 1978419655660313589123979, 5842587018385982521381124421, 20880467999847912034355032910567, 88817841970012523233890533447265625, 443426488243037769948249630619149892803
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2003

Keywords

Comments

a(n) == 2*n + 1 (mod 24). - Mathew Englander, Aug 16 2020

Crossrefs

Programs

Formula

From Mathew Englander, Aug 16 2020: (Start)
a(n) = A000312(2*n + 1).
a(n) = A016754(n)^n * (2*n + 1).
a(n) = A085527(n)^2 * (2*n + 1).
a(n) = A085528(n)^2 / (2*n + 1).
a(n) = A085530(n) * A005408(n).
a(n) = A085531(n) * A016754(n).
a(n) = A085532(n)^2 - A215265(2*n + 1).
a(n) = A085533(n) + A045531(2*n + 1).
a(n) = A085534(n+1) - A007781(2*n + 1).
a(n) = A085535(n+1) - A055869(2*n + 1).
(End)
Sum_{n>=0} 1/a(n) = (A073009 + A083648)/2 = 1.0373582538... . - Amiram Eldar, May 17 2022

A363398 Triangle read by rows. T(n, k) = [x^k] P(n, x), where P(n, x) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} (x^j * binomial(k, j) * (2*j + 1)^n), (secant case).

Original entry on oeis.org

1, 3, 3, 7, 36, 25, 15, 297, 625, 343, 31, 2106, 10000, 14406, 6561, 63, 13851, 131250, 369754, 413343, 161051, 127, 87480, 1546875, 7529536, 15411789, 14172488, 4826809, 255, 540189, 17109375, 134237509, 444816117, 721025327, 564736653, 170859375
Offset: 0

Views

Author

Peter Luschny, May 31 2023

Keywords

Comments

Here we give an inclusion-exclusion representation of 2^n*Euler(n) (see A122045 and A002436), in A363399 we give such a representation for 2^n*Euler(n, 1) = A155585(n), and in A363400 one for the combined sequences.

Examples

			The triangle T(n, k) starts:
  [0]   1;
  [1]   3,      3;
  [2]   7,     36,       25;
  [3]  15,    297,      625,       343;
  [4]  31,   2106,    10000,     14406,      6561;
  [5]  63,  13851,   131250,    369754,    413343,    161051;
  [6] 127,  87480,  1546875,   7529536,  15411789,  14172488,   4826809;
  [7] 255, 540189, 17109375, 134237509, 444816117, 721025327, 564736653, 170859375;
		

Crossrefs

Cf. A122045 (alternating row sums), A363396 (row sums), A126646 (column 0), A085527 (main diagonal), A141475 (central terms).
Cf. A363399 (tangent case), A363400 (combined case).

Programs

  • Maple
    P := (n, x) -> add(add(x^j*binomial(k, j)*(2*j + 1)^n, j=0..k)*2^(n-k), k=0..n):
    T := (n, k) -> coeff(P(n, x), x, k): seq(seq(T(n, k), k = 0..n), n = 0..7);
  • Mathematica
    (* From Detlef Meya, Oct 04 2023: (Start) *)
    T[n_, k_] := (2*k+1)^n*(2^(n+1) - Sum[Binomial[n+1, j], {j,0,k}]);
    (* Or: *)
    T[n_, k_] := (2*k+1)^n*Binomial[n+1, k+1]*Hypergeometric2F1[1, k-n, k+2, -1];
    Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]]  (* End *)

Formula

Sum_{k=0..n} (-1)^k*T(n, k) = 2^n*Euler(n) = 4^n*Euler(n, 1/2).
(Sum_{k=0..n} (-1)^k*T(n, k)) / 2^n = Euler(n) = 2^n*Euler(n, 1/2) = A122045(n).
Sum_{k=0..2*n} (-1)^k*T(2*n, k) = 4^n*Euler(2*n) = 16^n*Euler(2*n, 1/2) = (-1)^n*A002436(n).
From Detlef Meya, Oct 04 2023: (Start)
T(n, k) = (2*k + 1)^n * binomial(n+1, k+1) * hypergeom([1, k-n], [k+2], -1).
T(n, k) = (2*k + 1)^n * (2^(n + 1) - Sum_{j=0..k} binomial(n+1, j)). (End)

A376037 E.g.f. satisfies A(x) = (exp(x / (1 - A(x))^2) - 1) / (1 - A(x)).

Original entry on oeis.org

0, 1, 7, 115, 3047, 111771, 5244555, 299941195, 20239069807, 1574068019851, 138641219870243, 13640672949173403, 1482772864485867399, 176478769995088245595, 22825571074271407363771, 3187825736999237502879019, 478120273969744650293424095
Offset: 0

Views

Author

Seiichi Manyama, Sep 07 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (2*n+2*k-2)!/(2*n+k-1)!*stirling(n, k, 2));

Formula

a(n) = Sum_{k=1..n} (2*n+2*k-2)!/(2*n+k-1)! * Stirling2(n,k).
E.g.f.: Series_Reversion( (1 - x)^2 * log(1 + x * (1 - x)) ).

A333420 Table T(n,k) read by upward antidiagonals. T(n,k) is the maximum value of Product_{i=1..n} Sum_{j=1..k} r[(i-1)*k+j] among all permutations r of {1..kn}.

Original entry on oeis.org

1, 2, 3, 6, 25, 6, 24, 343, 110, 10, 120, 6561, 3375, 324, 15, 720, 161051, 144400, 17576, 756, 21, 5040, 4826809, 7962624, 1336336, 64000, 1521, 28, 40320, 170859375, 535387328, 130691232, 7595536, 185193, 2756, 36, 3628800, 6975757441
Offset: 1

Views

Author

Chai Wah Wu, Mar 23 2020

Keywords

Comments

A dual sequence to A331889.
k 1 2 3 4 5 6 7 8 9
--------------------------------------------------------------------------------------
n 1| 1 3 6 10 15 21 28 36 45
2| 2 25 110 324 756 1521 2756 4624 7310
3| 6 343 3375 17576 64000 185193 456533 1000000 2000376
4| 24 6561 144400 1336336 7595536 31640625 106131204
5| 120 161051 7962624 130691232
6| 720 4826809 535387328
7| 5040 170859375
8| 40320 6975757441
9| 3628800
10| 39916800

Crossrefs

Programs

  • Python
    from itertools import combinations, permutations
    from sympy import factorial
    def T(n,k): # T(n,k) for A333420
        if k == 1:
            return int(factorial(n))
        if n == 1:
            return k*(k+1)//2
        if k % 2 == 0 or (k >= n-1 and n % 2 == 1):
            return (k*(k*n+1)//2)**n
        if k >= n-1 and n % 2 == 0 and k % 2 == 1:
            return ((k**2*(k*n+1)**2-1)//4)**(n//2)
        nk = n*k
        nktuple = tuple(range(1,nk+1))
        nkset = set(nktuple)
        count = 0
        for firsttuple in combinations(nktuple,n):
            nexttupleset = nkset-set(firsttuple)
            for s in permutations(sorted(nexttupleset),nk-2*n):
                llist = sorted(nexttupleset-set(s),reverse=True)
                t = list(firsttuple)
                for i in range(0,k-2):
                    itn = i*n
                    for j in range(n):
                            t[j] += s[itn+j]
                t.sort()
                w = 1
                for i in range(n):
                    w *= llist[i]+t[i]
                if w > count:
                    count = w
        return count

Formula

T(n,k) <= floor((k*(k*n+1)/2)^n) with equality if k = 2*t+n*u for nonnegative integers t and u.
T(n,1) = n! = A000142(n).
T(1,k) = k*(k+1)/2 = A000217(k).
T(n,2) = (2*n+1)^n = A085527(n).
If n is even, k is odd and k >= n-1, then T(n,k) = ((k^2*(k*n+1)^2-1)/4)^(n/2).

A229212 Square array of numerators of t(n,k) = (1+1/(k*n))^n, read by descending antidiagonals.

Original entry on oeis.org

2, 3, 9, 4, 25, 64, 5, 49, 343, 625, 6, 81, 1000, 6561, 7776, 7, 121, 2197, 28561, 161051, 117649, 8, 169, 4096, 83521, 1048576, 4826809, 2097152, 9, 225, 6859, 194481, 4084101, 47045881, 170859375, 43046721, 10, 289
Offset: 1

Views

Author

Jean-François Alcover, Sep 16 2013

Keywords

Comments

Limit(t(n,k), n -> infinity) = exp(1/k).
1st row = A020725
2nd row = A016754
3rd row = A016779
4th row = A016816
5th row = A016865
1st column = A000169
2nd column = A085527

Examples

			Table of fractions begins:
   2,       3/2,        4/3,         5/4, ...
  9/4,     25/16,      49/36,       81/64, ...
64/27,   343/216,   1000/729,    2197/1728, ...
625/256, 6561/4096, 28561/20736, 83521/65536, ...
...
Table of numerators begins:
2,      3,     4,     5, ...
9,     25,    49,    81, ...
64,   343,  1000,  2197, ...
625, 6561, 28561, 83521, ...
...
Triangle of antidiagonals begins:
2;
3, 9;
4, 25, 64;
5, 49, 343, 625;
...
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := (1+1/(k*n))^n; Table[t[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten // Numerator
Showing 1-10 of 15 results. Next