A085537 a(n) = n^4 - n^3.
0, 0, 8, 54, 192, 500, 1080, 2058, 3584, 5832, 9000, 13310, 19008, 26364, 35672, 47250, 61440, 78608, 99144, 123462, 152000, 185220, 223608, 267674, 317952, 375000, 439400, 511758, 592704, 682892, 783000, 893730, 1015808, 1149984, 1297032, 1457750, 1632960
Offset: 0
Links
- Michael B. Porter, Table of n, a(n) for n = 0..100000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Mark L. Lewis, Bounding group orders by large character degrees: A question of Snyder, arXiv:1206.4334 [math.GR], Jun 19 2012.
- Eric Weisstein's World of Mathematics, Rook Graph.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Mathematica
Table[(n - 1) n^3, {n, 0, 20}] (* Eric W. Weisstein, Sep 08 2017 *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 8, 54, 192, 500}, {0, 20}] (* Eric W. Weisstein, Sep 08 2017 *) CoefficientList[Series[2 x^2 (4 + 7 x + x^2)/(1 - x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
-
PARI
A085537(n) = n^4-n^3
Formula
From R. J. Mathar, Sep 12 2008: (Start)
a(n) = A085540(n-1).
G.f.: 2*x^2*(4 + 7*x + x^2)/(1-x)^5. (End)
Sum_{n>=2} 1/a(n) = 3 - zeta(2) - zeta(3) = A152419. - Daniel Suteu, Feb 06 2017
a(n) = 2*A092364(n+1). - Bruno Berselli, Sep 08 2017
Sum_{n>=2} (-1)^n/a(n) = Pi^2/12 + 2*log(2) + 3*zeta(3)/4 - 3. - Amiram Eldar, Jul 05 2020
E.g.f.: exp(x)*x^2*(4 + 5*x + x^2). - Stefano Spezia, Jul 06 2021
Product_{n>=2} (1 - 1/a(n)) = A146489. - Amiram Eldar, Nov 22 2022
Comments