cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A379043 Decimal expansion of log(A085851).

Original entry on oeis.org

3, 3, 3, 2, 4, 2, 7, 2, 1, 9, 7, 6, 1, 8, 1, 8, 8, 7, 8, 5, 3, 7, 4, 7, 7, 6, 4, 0, 0, 5, 6, 7, 6, 3, 4, 3, 5, 5, 9, 4, 7, 0, 3, 3, 5, 7, 2, 2, 9, 6, 3, 8, 8, 3, 7, 8, 4, 2, 0, 8, 0, 3, 0, 1, 5, 9, 8, 0, 1, 8, 9, 0, 6, 3, 7, 0, 9, 7, 2, 5, 0, 5, 3, 2, 8, 9, 6, 1, 6, 8, 1, 7, 9, 2, 7, 5, 2, 2, 5, 4
Offset: 0

Views

Author

Stefano Spezia, Dec 14 2024

Keywords

Examples

			0.33324272197618188785374776400567634355947033572296...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.12, p. 343.

Crossrefs

Cf. A085851.

Programs

  • Mathematica
    RealDigits[Log[Root[-32751691810479015985152 + 97143135277377575190528*#1^4 - 73347491183630103871488*#1^6 - 71220809441400405884928*#1^8 + 107155448150443388043264*#1^10 - 72405670285649161617408*#1^12 + 2958015038376958230528*#1^14 + 7449488310131083100160*#1^16 + 797726698866658379776*#1^18 + 2505062311720673792* #1^20 + 2013290651222784*#1^22 + 25937424601*#1^24 & , 2]], 10,100][[1]] (* after Vaclav Kotesovec, Apr 03 2014 in A085851 *)

A066864 Number of binary arrangements without adjacent 1's on n X n rhombic hexagonal grid.

Original entry on oeis.org

1, 2, 6, 42, 524, 13322, 647252, 61758332, 11435477118, 4129523869606, 2902264461628298, 3973109800760143708, 10590895512774862686570, 54979738656662942307796576, 555797909644630436677137498230, 10941698340065066230952215658836402, 419471520990343359533179780148504998680
Offset: 0

Views

Author

R. H. Hardin, Jan 25 2002

Keywords

Comments

Also the number of tilings of an (n+1) X (n+1) square using 1 X 1 squares and L-tiles. An L-tile is a 2 X 2 square with the upper right 1 X 1 subsquare removed and no rotations are allowed. a(2) = 6:
|||_| | ||| |||_| || || |||_| || ||
|||_| |_|_| | ||| ||__| || || | |_|
|||_| |||_| |_|_| |||_| ||__| |_|_| - Alois P. Heinz, Jun 06 2013

Examples

			Neighbors for n=4:
  o--o--o--o
  | /| /| /|
  |/ |/ |/ |
  o--o--o--o
  | /| /| /|
  |/ |/ |/ |
  o--o--o--o
  | /| /| /|
  |/ |/ |/ |
  o--o--o--o
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 342-349.
  • J. Katzenelson and R. P. Kurshan, S/R: A Language for Specifying Protocols and Other Coordinating Processes, pp. 286-292 in Proc. IEEE Conf. Comput. Comm., 1986.

Crossrefs

Main diagonal of A219741 and A226444.

Programs

  • Maple
    a:= proc(n) option remember; local b; b:=
          proc(n, l) option remember; local k;
            if n<2 then 1
          elif min(l[])>0 then b(n-1, map(h->h-1, l))
          else for k while l[k]>0 do od; b(n, subsop(k=1, l))+
               `if`(n>1 and kAlois P. Heinz, Aug 26 2013
  • Mathematica
    $RecursionLimit = 1000; a[n0_] := a[n0] = Module[{b}, b[n_, l_List] := b[n, l] = Module[{k}, Which[n<2, 1, Min[l]>0, b[n-1, l-1], True, For[k = 1, l[[k]] > 0, k++]; b[n, ReplacePart[l, k -> 1]] + If[n>1 && k 2, k+1 -> 1}]], 0]]];  b[n0+1, Array[0&, n0+1]]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)

Formula

Limit_{n->oo} a(n)^(1/n^2) = 1.395485972... (see A085851).

Extensions

a(12)-a(21) from Vaclav Kotesovec, May 01 2012
a(0) and a(22) from Alois P. Heinz, Aug 26 2013
a(23) from Alois P. Heinz, Aug 28 2013
a(24) from Vaclav Kotesovec, Sep 19 2014
a(25) from Alois P. Heinz, Dec 03 2014
a(26)-a(28) from Vaclav Kotesovec, Aug 13 2016

A085850 Decimal expansion of hard square entropy constant.

Original entry on oeis.org

1, 5, 0, 3, 0, 4, 8, 0, 8, 2, 4, 7, 5, 3, 3, 2, 2, 6, 4, 3, 2, 2, 0, 6, 6, 3, 2, 9, 4, 7, 5, 5, 5, 3, 6, 8, 9, 3, 8, 5, 7, 8, 1, 0
Offset: 1

Views

Author

Eric W. Weisstein, Jul 05 2003

Keywords

Examples

			1.503048082...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.12, p. 342.

Crossrefs

Extensions

More terms from R. J. Mathar, Jul 18 2007
Terms a(19)-a(44) computed R. J. Baxter, 1998

A247413 Decimal expansion of the entropy constant related to A063443.

Original entry on oeis.org

1, 3, 4, 2, 6, 4, 3, 9, 5, 1, 1, 2, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 16 2014

Keywords

Examples

			1.342643951124...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 343.
  • B. D. McKay, On Calkin and Wilf's limit theorem for grid graphs, unpublished note, 1996.

Crossrefs

Formula

Equals limit n->infinity (A063443(n))^(1/n^2).
Equals limit n->infinity (A212269(n))^(1/n^2).
Showing 1-4 of 4 results.