cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A379041 Decimal expansion of log(A085850).

Original entry on oeis.org

4, 0, 7, 4, 9, 5, 1, 0, 1, 2, 6, 0, 6, 8, 8, 0, 0, 0, 4, 5, 0, 1, 4, 6, 8, 1, 2, 3, 5, 8, 6, 5, 0, 4, 5, 4, 2, 2, 3, 6, 7
Offset: 0

Views

Author

Stefano Spezia, Dec 14 2024

Keywords

Examples

			0.407495101260688000450146812358650454223675...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.12, p. 342.

Crossrefs

Cf. A085850.

A006506 Number of n X n binary matrices with no 2 adjacent 1's, or number of configurations of non-attacking princes on an n X n board, where a "prince" attacks the four adjacent (non-diagonal) squares. Also number of independent vertex sets in an n X n grid.

Original entry on oeis.org

1, 2, 7, 63, 1234, 55447, 5598861, 1280128950, 660647962955, 770548397261707, 2030049051145980050, 12083401651433651945979, 162481813349792588536582997, 4935961285224791538367780371090, 338752110195939290445247645371206783, 52521741712869136440040654451875316861275
Offset: 0

Views

Author

Keywords

Comments

A two-dimensional generalization of the Fibonacci numbers.
Also the number of vertex covers in the n X n grid graph P_n X P_n.
A181030 (Number of n X n binary matrices with no leading bitstring in any row or column divisible by 4) is the same sequence. Proof from Steve Butler, Jan 26 2015: This is trivially true. A181030 is equivalent to this sequence by interchanging the roles of 0 and 1. In particular, A181030 looks for binary matrices with no leading bitstring divisible by 4, but a bitstring is divisible by 4 if and only if its last two digits is 0; in a binary matrix this can only be avoided if there are no two adjacent 0's (i.e., for any two adjacent 0's take the bitstring starting in that row or column and we are done); the present sequence looks for no two adjacent 1's. Similar reasons show that the array A181031 is equivalent to the array A089980.
Let R(n) be the set of squares that have vertices at integer coordinates and lie in the region of the plane |x|+|y| <= n+1, and let S(n) be the set of squares that have vertices at integer coordinates and lie in the region of the plane |x|+|y-1/2| <= n+2. Further let T be the collection of rectangular tiles with dimensions i X 1 or 1 X i with i arbitrary. Then a(2n) is the number of ways to tile R(n) using tiles from T and a(2n+1) is the number of ways to tile S(n) using tiles from T. (Note R(n) is the Aztec diamond of order n.) - Steve Butler, Jan 26 2015

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 342-349.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A027683 for toroidal version.
Table of values for n x m matrices: A089934.
Cf. A232833 for refinement by number of 1's.
Cf. also A191779.

Programs

  • Maple
    A006506 := proc(N) local i,j,p,q; p := 1+x11;
    if n=0 then return 1 fi;
    for i from 2 to N do
       q := p-select(has,p,x||(i-1)||1);
       p := p+expand(q*x||i||1)
    od;
    for j from 2 to N do
       q := p-select(has,p,x1||(j-1));
       p := subs(x1||(j-1)=1,p)+expand(q*x1||j);
       for i from 2 to N do
          q := p-select(has,p,{x||(i-1)||j,x||i||(j-1)});
          p := subs(x||i||(j-1)=1,p)+expand(q*x||i||j);
       od
    od;
    map(icontent,p)
    end:
    seq(A006506(n), n=0..15);
  • Mathematica
    a[n_] := a[n] = (p = 1 + x[1, 1]; Do[q = p - Select[p, ! FreeQ[#, x[i-1, 1]] &]; p = p + Expand[q*x[i, 1]], {i, 2, n}]; Do[q = p - Select[p, ! FreeQ[#, x[1, j-1]] &]; p = (p /. x[i, j-1] :> 1) + Expand[q*x[1, j]]; Do[q = p - Select[ p, ! FreeQ[#, x[i-1, j]] || ! FreeQ[#, x[i, j-1]] &]; p = (p /. x[i, j-1] :> 1) + Expand[q*x[i, j]], {i, 2, n}], {j, 2, n}]; p /. x[, ] -> 1); a /@ Range[14] (* Jean-François Alcover, May 25 2011, after Maple prog. *)
    Table[With[{g = GridGraph[{n, n}]}, Count[Subsets[Range[n^2], Length @ First @ FindIndependentVertexSet[g]], ?(IndependentVertexSetQ[g, #] &)]], {n, 5}] (* _Eric W. Weisstein, May 28 2017 *)
  • PARI
    a(n)=L=fibonacci(n+2);p=v=vector(L,i,1);c=0; for(i=0,2^n-1,j=i;while(j&&j%4<3,j\=2);if(j%4<3,p[c++]=i)); for(i=2,n,w=vector(L,j,0); for(j=1,L, for(k=1,L,if(bitand(p[j],p[k])==0,w[j]+=v[k])));v=w); sum(i=1,L,v[i]) \\ Robert Gerbicz, Jun 17 2011

Formula

Limit_{n->oo} a(n)^(1/n^2) = c1 = 1.50304... is the hard square entropy constant A085850. - Benoit Cloitre, Nov 16 2003
a(n) appears to behave like A * c3^n * c1^(n^2) where c1 is as above, c3 = 1.143519129587 approximately, A = 1.0660826 approximately. This is based on numerical analysis of a(n) for n up to 19. - Brendan McKay, Nov 16 2003
From n up to 39 we have A = 1.06608266035... - Vaclav Kotesovec, Jan 29 2024

Extensions

Sequence extended by Paul Zimmermann, Mar 15 1996
Maple program updated and sequence extended by Robert Israel, Jun 16 2011
a(0)=1 prepended by Alois P. Heinz, Jan 29 2024

A067964 Number of binary arrangements without adjacent 1's on n X n array connected n-s nw-se.

Original entry on oeis.org

2, 8, 90, 1876, 103484, 11462588, 3118943536, 1808994829500, 2465526600093372, 7394315828592829424, 50975951518289853305508, 784977037926751747674903856, 27509351187362150581313065415008, 2167705218542258344490649896364635660, 387057670485382113845659790427906287869964
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4 (dots represent spaces):
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Formula

Limit n->infinity (a(n))^(1/n^2) = 1.503048082... (see A085850)

Extensions

Terms a(14)-a(18) from Vaclav Kotesovec, May 01 2012

A244593 Decimal expansion of z_c = phi^5 (where phi is the golden ratio), a lattice statistics constant which is the exact value of the critical activity of the hard hexagon model.

Original entry on oeis.org

1, 1, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8, 7, 4, 2
Offset: 2

Views

Author

Jean-François Alcover, Jul 01 2014

Keywords

Comments

Essentially the same digit sequence as A239798, A019863 and A019827. - R. J. Mathar, Jul 03 2014
The minimal polynomial of this constant is x^2 - 11*x - 1. - Joerg Arndt, Jan 01 2017

Examples

			11.09016994374947424102293417182819058860154589902881431067724311352630...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.12.1 Phase transitions in Lattice Gas Models, p. 347.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 138-139.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 83.

Crossrefs

Programs

  • Mathematica
    RealDigits[GoldenRatio^5, 10, 103] // First
  • PARI
    (5*sqrt(5)+11)/2 \\ Charles R Greathouse IV, Aug 10 2016

Formula

Equals ((1 + sqrt(5))/2)^5 = (11 + 5*sqrt(5))/2.
Equals phi^5 = 11 + 1/phi^5 = 3 + 5*phi, an integer in the quadratic number field Q(sqrt(5)). - Wolfdieter Lang, Nov 11 2023
Equals lim_{n->infinity} S(n, 5*(-1 + 2*phi))/ S(n-1, 5*(-1 + 2*phi)), with the S-Chebyshev polynomials (see A049310). - Wolfdieter Lang, Nov 15 2023

A212270 Number of ways to place k non-attacking wazirs on an n x n cylindrical chessboard, summed over all k >= 0.

Original entry on oeis.org

2, 7, 43, 933, 36211, 3557711, 746156517, 363549830913, 394677987525997, 974602314570939359, 5418730454986467701985, 68176187476467835406646029, 1936241516342334422813929891295, 124281423643836238320564876791634465, 18018270577720149773239661332878801006033
Offset: 1

Views

Author

Vaclav Kotesovec, May 12 2012

Keywords

Comments

Wazir is a leaper [0,1].

Crossrefs

Main diagonal of A286513.

Formula

Limit n ->infinity (a(n))^(1/n^2) is the hard square entropy constant A085850.

A085851 Decimal expansion of hard hexagon entropy constant.

Original entry on oeis.org

1, 3, 9, 5, 4, 8, 5, 9, 7, 2, 4, 7, 9, 3, 0, 2, 7, 3, 5, 2, 2, 9, 5, 0, 0, 6, 6, 3, 5, 6, 6, 8, 8, 8, 0, 6, 8, 9, 5, 4, 1, 0, 3, 7, 2, 8, 1, 4, 4, 6, 6, 1, 1, 9, 0, 8, 1, 7, 4, 7, 2, 1, 5, 6, 1, 3, 5, 7, 6, 0, 8, 8, 0, 3, 5, 8, 6, 9, 7, 7, 7, 4, 6, 8, 9, 8, 3, 7, 8, 7, 3, 0, 8, 5, 2, 7, 5, 4, 2, 7, 9, 0
Offset: 1

Views

Author

Eric W. Weisstein, Jul 05 2003

Keywords

Examples

			1.395485972...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.12, p. 343.

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Root[-32751691810479015985152 + 97143135277377575190528*#1^4 - 73347491183630103871488*#1^6 - 71220809441400405884928*#1^8 + 107155448150443388043264*#1^10 - 72405670285649161617408*#1^12 + 2958015038376958230528*#1^14 + 7449488310131083100160*#1^16 + 797726698866658379776*#1^18 + 2505062311720673792* #1^20 + 2013290651222784*#1^22 + 25937424601*#1^24 & , 2], 200]][[1]] (* Vaclav Kotesovec, Apr 03 2014 *)

A212271 Number of ways to place k non-attacking ferses on an n x n cylindrical chessboard, summed over all k >= 0.

Original entry on oeis.org

2, 9, 80, 1600, 79033, 8156736, 2055960192, 1108756350625, 1411080429618656, 3943472747846953216, 25425527581172360096017, 365481944233773616212640000, 11980566143208960475692367828480, 882106482533191605447029340350009049, 147314997388032765439791110273770608260928
Offset: 1

Views

Author

Vaclav Kotesovec, May 12 2012

Keywords

Comments

Fers is a leaper [1,1].

Crossrefs

Formula

Limit n ->infinity (a(n))^(1/n^2) is the hard square entropy constant A085850.

A247413 Decimal expansion of the entropy constant related to A063443.

Original entry on oeis.org

1, 3, 4, 2, 6, 4, 3, 9, 5, 1, 1, 2, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 16 2014

Keywords

Examples

			1.342643951124...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 343.
  • B. D. McKay, On Calkin and Wilf's limit theorem for grid graphs, unpublished note, 1996.

Crossrefs

Formula

Equals limit n->infinity (A063443(n))^(1/n^2).
Equals limit n->infinity (A212269(n))^(1/n^2).
Showing 1-8 of 8 results.