cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A181030 Duplicate of A006506.

Original entry on oeis.org

1, 2, 7, 63, 1234, 55447, 5598861, 1280128950, 660647962955, 770548397261707, 2030049051145980050, 12083401651433651945979, 162481813349792588536582997, 4935961285224791538367780371090, 338752110195939290445247645371206783
Offset: 1

Views

Author

Keywords

Crossrefs

Diagonal of A181031.

Formula

Conjecture: a(n) = A006506(n-1), n>1. - R. J. Mathar, Oct 02 2010

A191779 Erroneous version of A006506.

Original entry on oeis.org

2, 2, 81, 528710, 3078729612504, 39365894794886211936384, 2615263044919921664782892915256720000, 1836670053921243130054784143187780915636829250560000000
Offset: 0

Views

Author

N. J. A. Sloane, Jun 16 2011

Keywords

Comments

The Stosic et al. 1997 paper contains a Maple program which it claims will generate A006506. This was true in Maple 5, but newer versions of Maple produces the (incorrect) terms shown here because the concatenation operator changed from "." to "||". This entry is an explanation and a pointer to the correct sequence.

References

  • B. D. Stosic, T. Stosic, I. P. Fittipaldi and J. J. P. Veerman, Residual entropy of the square Ising antiferromagnet in the maximum critical field: the Fibonacci matrix, Journal of Physics A: Mathematical and General, Volume 30, Number 10, 1997, pp. L331-L337.

A063443 Number of ways to tile an n X n square with 1 X 1 and 2 X 2 tiles.

Original entry on oeis.org

1, 1, 2, 5, 35, 314, 6427, 202841, 12727570, 1355115601, 269718819131, 94707789944544, 60711713670028729, 69645620389200894313, 144633664064386054815370, 540156683236043677756331721, 3641548665525780178990584908643, 44222017282082621251230960522832336
Offset: 0

Views

Author

Reiner Martin, Jul 23 2001

Keywords

Comments

a(n) is also the number of ways to populate an n-1 X n-1 chessboard with nonattacking kings (including the case of zero kings). Cf. A193580. - Andrew Woods, Aug 27 2011
Also the number of vertex covers and independent vertex sets of the n-1 X n-1 king graph.

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 343

Crossrefs

a(n) = row sum n-1 of A193580.
Main diagonal of A245013.

Programs

  • Mathematica
    Needs["LinearAlgebra`MatrixManipulation`"] Remove[mat] step[sa[rules1_, {dim1_, dim1_}], sa[rules2_, {dim2_, dim2_}]] := sa[Join[rules2, rules1 /. {x_Integer, y_Integer} -> {x + dim2, y}, rules1 /. {x_Integer, y_Integer} -> {x, y + dim2}], {dim1 + dim2, dim1 + dim2}] mat[0] = sa[{{1, 1} -> 1}, {1, 1}]; mat[1] = sa[{{1, 1} -> 1, {1, 2} -> 1, {2, 1} -> 1}, {2, 2}]; mat[n_] := mat[n] = step[mat[n - 2], mat[n - 1]]; A[n_] := mat[n] /. sa -> SparseArray; F[n_] := MatrixPower[A[n], n + 1][[1, 1]]; (* Mark McClure (mcmcclur(AT)bulldog.unca.edu), Mar 19 2006 *)
    $RecursionLimit = 1000; Clear[a, b]; b[n_, l_List] := b[n, l] = Module[{m=Min[l], k}, If[m>0, b[n-m, l-m], If[n == 0, 1, k=Position[l, 0, 1, 1][[1, 1]]; b[n, ReplacePart[l, k -> 1]] + If[n>1 && k 2, k+1 -> 2}]], 0]]]]; a[n_] := a[n] = If[n<2, 1, b[n, Table[0, {n}]]]; Table[Print[a[n]]; a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 11 2014, after Alois P. Heinz *)

Formula

Lim_{n -> infinity} (a(n))^(1/n^2) = A247413 = 1.342643951124... . - Brendan McKay, 1996

Extensions

4 more terms from R. H. Hardin, Jan 23 2002
2 more terms from Keith Schneider (kschneid(AT)bulldog.unca.edu), Mar 19 2006
5 more terms from Andrew Woods, Aug 27 2011
a(22)-a(24) in b-file from Vaclav Kotesovec, May 01 2012
a(0) inserted by Alois P. Heinz, Sep 17 2014
a(25)-a(40) in b-file from Johan Nilsson, Mar 10 2016

A027683 Number of independent vertex sets of the n X n torus grid graph.

Original entry on oeis.org

1, 7, 34, 743, 25531, 2406862, 464483559, 213256442503, 215560806324388, 498819827260367617, 2590618817013278596997, 30496896080418683388380966, 809724336154415150287031740151, 48609694845429192825410114233405807, 6589876632329358971395398453738256596574, 2018670118781080042934952855192359574137313799
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A006506 for flat version.

Programs

  • Mathematica
    a[n_] := With[{sets = Select[Tuples[{0, 1}, n], Count[#*RotateLeft[#], 1] == 0 &]}, Tr[MatrixPower[Table[Boole[Count[s1*s2, 1] == 0], {s1, sets}, {s2, sets}], n]]];
    Table[a[n], {n, 1, 10}] (* Pjotr Buys, Jun 07 2023 *)

Extensions

Terms a(14)-a(16) from Vaclav Kotesovec, Dec 02 2011

A066864 Number of binary arrangements without adjacent 1's on n X n rhombic hexagonal grid.

Original entry on oeis.org

1, 2, 6, 42, 524, 13322, 647252, 61758332, 11435477118, 4129523869606, 2902264461628298, 3973109800760143708, 10590895512774862686570, 54979738656662942307796576, 555797909644630436677137498230, 10941698340065066230952215658836402, 419471520990343359533179780148504998680
Offset: 0

Views

Author

R. H. Hardin, Jan 25 2002

Keywords

Comments

Also the number of tilings of an (n+1) X (n+1) square using 1 X 1 squares and L-tiles. An L-tile is a 2 X 2 square with the upper right 1 X 1 subsquare removed and no rotations are allowed. a(2) = 6:
|||_| | ||| |||_| || || |||_| || ||
|||_| |_|_| | ||| ||__| || || | |_|
|||_| |||_| |_|_| |||_| ||__| |_|_| - Alois P. Heinz, Jun 06 2013

Examples

			Neighbors for n=4:
  o--o--o--o
  | /| /| /|
  |/ |/ |/ |
  o--o--o--o
  | /| /| /|
  |/ |/ |/ |
  o--o--o--o
  | /| /| /|
  |/ |/ |/ |
  o--o--o--o
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 342-349.
  • J. Katzenelson and R. P. Kurshan, S/R: A Language for Specifying Protocols and Other Coordinating Processes, pp. 286-292 in Proc. IEEE Conf. Comput. Comm., 1986.

Crossrefs

Main diagonal of A219741 and A226444.

Programs

  • Maple
    a:= proc(n) option remember; local b; b:=
          proc(n, l) option remember; local k;
            if n<2 then 1
          elif min(l[])>0 then b(n-1, map(h->h-1, l))
          else for k while l[k]>0 do od; b(n, subsop(k=1, l))+
               `if`(n>1 and kAlois P. Heinz, Aug 26 2013
  • Mathematica
    $RecursionLimit = 1000; a[n0_] := a[n0] = Module[{b}, b[n_, l_List] := b[n, l] = Module[{k}, Which[n<2, 1, Min[l]>0, b[n-1, l-1], True, For[k = 1, l[[k]] > 0, k++]; b[n, ReplacePart[l, k -> 1]] + If[n>1 && k 2, k+1 -> 1}]], 0]]];  b[n0+1, Array[0&, n0+1]]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)

Formula

Limit_{n->oo} a(n)^(1/n^2) = 1.395485972... (see A085851).

Extensions

a(12)-a(21) from Vaclav Kotesovec, May 01 2012
a(0) and a(22) from Alois P. Heinz, Aug 26 2013
a(23) from Alois P. Heinz, Aug 28 2013
a(24) from Vaclav Kotesovec, Sep 19 2014
a(25) from Alois P. Heinz, Dec 03 2014
a(26)-a(28) from Vaclav Kotesovec, Aug 13 2016

A089934 Table T(n,k) of the number of n X k matrices on {0,1} without adjacent 0's in any row or column.

Original entry on oeis.org

2, 3, 3, 5, 7, 5, 8, 17, 17, 8, 13, 41, 63, 41, 13, 21, 99, 227, 227, 99, 21, 34, 239, 827, 1234, 827, 239, 34, 55, 577, 2999, 6743, 6743, 2999, 577, 55, 89, 1393, 10897, 36787, 55447, 36787, 10897, 1393, 89, 144, 3363, 39561, 200798, 454385, 454385, 200798
Offset: 1

Views

Author

Marc LeBrun, Nov 15 2003

Keywords

Comments

Recurrence orders are A089935. n X 1/1 X n patterns interpreted as binary values is A003714.
Number of independent vertex sets in the P_n X P_k grid graph. - Andrew Howroyd, Jun 06 2017
All columns (or rows) are linear recurrences with constant coefficients and order of the recurrence <= A001224(k+1). - Andrew Howroyd, Dec 24 2019
The enumeration of tiling "W-shaped" polyominoes in a (n+1) X (k+1) rectangle, whose shapes are (no flipping or rotating allowed):
.. .._. ... ...
|| ||_| .||_| .||_|
|| ||_| .||_|
|| ||_|
|| ... - _Liang Kai, Apr 19 2025

Examples

			Table starts:
  ========================================================
  n\k|  1   2     3      4       5        6          7
  ---|----------------------------------------------------
  1  |  2   3     5      8      13       21         34 ...
  2  |  3   7    17     41      99      239        577 ...
  3  |  5  17    63    227     827     2999      10897 ...
  4  |  8  41   227   1234    6743    36787     200798 ...
  5  | 13  99   827   6743   55447   454385    3729091 ...
  6  | 21 239  2999  36787  454385  5598861   69050253 ...
  7  | 34 577 10897 200798 3729091 69050253 1280128950 ...
  ... - _Andrew Howroyd_, Jun 06 2017
a(2,2)=7:
  11 11 11 10 10 01 01
  11 10 01 11 01 11 10
		

Crossrefs

T(n, 0) = T(0, m) = 1. Zero based table is A089980.
Main diagonal is A006506.
Cf. A089935, A001224, A197054 (maximal independent sets), A218354, A003714.

Programs

  • PARI
    step(v, S)={vector(#v, i, sum(j=1, #v, v[j]*!bitand(S[i], S[j])))}
    mkS(k)={select(b->!bitand(b,b>>1), [0..2^k-1])}
    T(n,k)={my(S=mkS(k), v=vector(#S, i, i==1)); for(n=1, n, v=step(v,S)); vecsum(v)} \\ Andrew Howroyd, Dec 24 2019

A067966 Number of binary arrangements without adjacent 1's on n X n array connected n-s.

Original entry on oeis.org

1, 2, 9, 125, 4096, 371293, 85766121, 52523350144, 83733937890625, 350356403707485209, 3833759992447475122176, 109879109551310452512114617, 8243206936713178643875538610721, 1619152874321527556575810000000000000
Offset: 0

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Comments

Central coefficients of triangle A210341.

Examples

			Neighbors for n=4:
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Programs

  • Magma
    [Fibonacci(n+2)^n: n in [0..13]]; // Bruno Berselli, Mar 28 2012
  • Mathematica
    Table[Fibonacci[n+2]^n, {n, 0, 100}]
  • Maxima
    makelist(fib(n+2)^n, n, 0, 14);
    
  • PARI
    a(n)=fibonacci(n+2)^n \\ Charles R Greathouse IV, Mar 28 2012
    

Formula

a(n) = F(n+2)^n, where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) ~ phi^2/sqrt(5) phi^n^2. [Charles R Greathouse IV, Mar 28 2012]

Extensions

Edited by Dean Hickerson, Feb 15 2002

A066866 Number of binary arrangements without adjacent 1's in n X n rhombic hexagonal grid torus.

Original entry on oeis.org

1, 5, 22, 201, 4216, 162314, 12329633, 1831137521, 528106112383, 296848246952000, 324932515409958655, 692572885398506075946, 2874785146216927021053015, 23237716875160177498526082523, 365789982527236500400197753931927, 11212996751916827855636781928754023265
Offset: 1

Views

Author

R. H. Hardin, Jan 25 2002

Keywords

Examples

			neighbors for n=4:
.|/ |/ |/ |/
-o--o--o--o-
/| /| /| /|
.|/ |/ |/ |/
-o--o--o--o-
/| /| /| /|
.|/ |/ |/ |/
-o--o--o--o-
/| /| /| /|
.|/ |/ |/ |/
-o--o--o--o-
/| /| /| /|
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 342-349.
  • J. Katzenelson and R. P. Kurshan, S/R: A Language for Specifying Protocols and Other Coordinating Processes, pp. 286-292 in Proc. IEEE Conf. Comput. Comm., 1986.

Crossrefs

Extensions

Terms a(11)-a(12) from Vaclav Kotesovec, May 07 2012
a(13) from Vaclav Kotesovec, Aug 15 2016
a(14) from Vaclav Kotesovec, May 24 2021
a(15)-a(16) from Sean A. Irvine, Nov 18 2023

A067961 Number of binary arrangements without adjacent 1's on n X n torus connected n-s.

Original entry on oeis.org

1, 9, 64, 2401, 161051, 34012224, 17249876309, 23811286661761, 84590643846578176, 792594609605189126649, 19381341794579313317802199, 1242425797286480951825250390016, 208396491430277954192889648311785961, 91534759488004239323168528670973468727049
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4:
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, e-w n-s A027683, e-w ne-sw n-s A066866.
Cf. A156216. - Paul D. Hanna, Sep 13 2010
Cf. A215941.

Programs

  • Magma
    [Lucas(n)^n: n in [1..15]]; // Vincenzo Librandi, Mar 15 2014
  • Maple
    a:= n-> (<<0|1>, <1|1>>^n. <<2, 1>>)[1$2]^n:
    seq(a(n), n=1..15);  # Alois P. Heinz, Aug 01 2021
  • Mathematica
    Table[LucasL[n]^n,{n,15}] (* Harvey P. Dale, Mar 13 2014 *)

Formula

a(n) = L(n)^n, where L(n) = A000032(n) is the n-th Lucas number.
Logarithmic derivative of A156216. - Paul D. Hanna, Sep 13 2010
Sum_{n>=1} 1/a(n) = A215941. - Amiram Eldar, Nov 17 2020

Extensions

Edited by Dean Hickerson, Feb 15 2002

A067965 Number of binary arrangements without adjacent 1's on n X n array connected ne-sw and nw-se.

Original entry on oeis.org

2, 9, 119, 2704, 177073, 21836929, 6985036032, 4576976735769, 7263963336910751, 24830487842030082304, 198126078679714777857441, 3494153303407491549112098721, 141264727800378056245286463971328, 12779122891585386852029424628087941481, 2628141044813862018744988536642011269669959
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4 (dots represent spaces):
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
		

Crossrefs

Main diagonal of A181212.
Cf. circle A000204, line A000045, arrays: e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Extensions

Term a(14) from Vaclav Kotesovec, Dec 06 2011
Term a(15) from Vaclav Kotesovec, Jan 03 2012
Term a(16) from Vaclav Kotesovec, May 01 2012
Term a(17)-a(18) from Vaclav Kotesovec, Aug 13 2016
Showing 1-10 of 37 results. Next