A006506
Number of n X n binary matrices with no 2 adjacent 1's, or number of configurations of non-attacking princes on an n X n board, where a "prince" attacks the four adjacent (non-diagonal) squares. Also number of independent vertex sets in an n X n grid.
Original entry on oeis.org
1, 2, 7, 63, 1234, 55447, 5598861, 1280128950, 660647962955, 770548397261707, 2030049051145980050, 12083401651433651945979, 162481813349792588536582997, 4935961285224791538367780371090, 338752110195939290445247645371206783, 52521741712869136440040654451875316861275
Offset: 0
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 342-349.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jin-Guo Liu, Table of n, a(n) for n = 0..39 (terms 1..33 from Robert Gerbicz, 34..35 from P. Butera and M. Pernici, 37..38 from Casey Mills Davis)
- P. Butera and M. Pernici, Sums of permanental minors using Grassmann algebra, arXiv preprint arXiv:1406.5337 [hep-lat], 2014.
- Casey Mills Davis, C++ program used to generate a(n) for n = 36..37
- Steven R. Finch, Hard Square Entropy Constant [Broken link]
- Steven R. Finch, Hard Square Entropy Constant [From the Wayback machine]
- Xuanzhao Gao, Xiaofeng Li, and Jinguo Liu, Programming guide for solving constraint satisfaction problems with tensor networks, arXiv:2501.00227 [physics.comp-ph], 2024. See p. 24.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p.372.
- Jin-Guo Liu, Xun Gao, Madelyn Cain, Mikhail D. Lukin and Sheng-Tao Wang, Computing solution space properties of combinatorial optimization problems via generic tensor networks, arXiv:2205.03718 [cond-mat.stat-mech], 2022. Terms 38..39.
- I. Mezo, Periodicity of the Last Digits of Some Combinatorial Sequences, J. Int. Seq. 17 (2014) #14.1.1.
- B. D. Stosic, T. Stosic, I. P. Fittipaldi and J. J. P. Veerman, Residual entropy of the square Ising antiferromagnet in the maximum critical field: the Fibonacci matrix, Journal of Physics A: Mathematical and General, Volume 30, Number 10, 1997, pp. L331-L337.
- Peter Tittmann, Enumeration in Graphs
- Eric Weisstein's World of Mathematics, (0,1)-Matrix
- Eric Weisstein's World of Mathematics, Grid Graph
- Eric Weisstein's World of Mathematics, Hard Square Entropy Constant
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Vertex Cover
- Index entries for sequences related to binary matrices
Table of values for n x m matrices:
A089934.
Cf.
A232833 for refinement by number of 1's.
-
A006506 := proc(N) local i,j,p,q; p := 1+x11;
if n=0 then return 1 fi;
for i from 2 to N do
q := p-select(has,p,x||(i-1)||1);
p := p+expand(q*x||i||1)
od;
for j from 2 to N do
q := p-select(has,p,x1||(j-1));
p := subs(x1||(j-1)=1,p)+expand(q*x1||j);
for i from 2 to N do
q := p-select(has,p,{x||(i-1)||j,x||i||(j-1)});
p := subs(x||i||(j-1)=1,p)+expand(q*x||i||j);
od
od;
map(icontent,p)
end:
seq(A006506(n), n=0..15);
-
a[n_] := a[n] = (p = 1 + x[1, 1]; Do[q = p - Select[p, ! FreeQ[#, x[i-1, 1]] &]; p = p + Expand[q*x[i, 1]], {i, 2, n}]; Do[q = p - Select[p, ! FreeQ[#, x[1, j-1]] &]; p = (p /. x[i, j-1] :> 1) + Expand[q*x[1, j]]; Do[q = p - Select[ p, ! FreeQ[#, x[i-1, j]] || ! FreeQ[#, x[i, j-1]] &]; p = (p /. x[i, j-1] :> 1) + Expand[q*x[i, j]], {i, 2, n}], {j, 2, n}]; p /. x[, ] -> 1); a /@ Range[14] (* Jean-François Alcover, May 25 2011, after Maple prog. *)
Table[With[{g = GridGraph[{n, n}]}, Count[Subsets[Range[n^2], Length @ First @ FindIndependentVertexSet[g]], ?(IndependentVertexSetQ[g, #] &)]], {n, 5}] (* _Eric W. Weisstein, May 28 2017 *)
-
a(n)=L=fibonacci(n+2);p=v=vector(L,i,1);c=0; for(i=0,2^n-1,j=i;while(j&&j%4<3,j\=2);if(j%4<3,p[c++]=i)); for(i=2,n,w=vector(L,j,0); for(j=1,L, for(k=1,L,if(bitand(p[j],p[k])==0,w[j]+=v[k])));v=w); sum(i=1,L,v[i]) \\ Robert Gerbicz, Jun 17 2011
Maple program updated and sequence extended by
Robert Israel, Jun 16 2011
A066864
Number of binary arrangements without adjacent 1's on n X n rhombic hexagonal grid.
Original entry on oeis.org
1, 2, 6, 42, 524, 13322, 647252, 61758332, 11435477118, 4129523869606, 2902264461628298, 3973109800760143708, 10590895512774862686570, 54979738656662942307796576, 555797909644630436677137498230, 10941698340065066230952215658836402, 419471520990343359533179780148504998680
Offset: 0
Neighbors for n=4:
o--o--o--o
| /| /| /|
|/ |/ |/ |
o--o--o--o
| /| /| /|
|/ |/ |/ |
o--o--o--o
| /| /| /|
|/ |/ |/ |
o--o--o--o
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 342-349.
- J. Katzenelson and R. P. Kurshan, S/R: A Language for Specifying Protocols and Other Coordinating Processes, pp. 286-292 in Proc. IEEE Conf. Comput. Comm., 1986.
-
a:= proc(n) option remember; local b; b:=
proc(n, l) option remember; local k;
if n<2 then 1
elif min(l[])>0 then b(n-1, map(h->h-1, l))
else for k while l[k]>0 do od; b(n, subsop(k=1, l))+
`if`(n>1 and kAlois P. Heinz, Aug 26 2013
-
$RecursionLimit = 1000; a[n0_] := a[n0] = Module[{b}, b[n_, l_List] := b[n, l] = Module[{k}, Which[n<2, 1, Min[l]>0, b[n-1, l-1], True, For[k = 1, l[[k]] > 0, k++]; b[n, ReplacePart[l, k -> 1]] + If[n>1 && k 2, k+1 -> 1}]], 0]]]; b[n0+1, Array[0&, n0+1]]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)
A067966
Number of binary arrangements without adjacent 1's on n X n array connected n-s.
Original entry on oeis.org
1, 2, 9, 125, 4096, 371293, 85766121, 52523350144, 83733937890625, 350356403707485209, 3833759992447475122176, 109879109551310452512114617, 8243206936713178643875538610721, 1619152874321527556575810000000000000
Offset: 0
Neighbors for n=4:
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
-
[Fibonacci(n+2)^n: n in [0..13]]; // Bruno Berselli, Mar 28 2012
-
Table[Fibonacci[n+2]^n, {n, 0, 100}]
-
makelist(fib(n+2)^n, n, 0, 14);
-
a(n)=fibonacci(n+2)^n \\ Charles R Greathouse IV, Mar 28 2012
A066866
Number of binary arrangements without adjacent 1's in n X n rhombic hexagonal grid torus.
Original entry on oeis.org
1, 5, 22, 201, 4216, 162314, 12329633, 1831137521, 528106112383, 296848246952000, 324932515409958655, 692572885398506075946, 2874785146216927021053015, 23237716875160177498526082523, 365789982527236500400197753931927, 11212996751916827855636781928754023265
Offset: 1
neighbors for n=4:
.|/ |/ |/ |/
-o--o--o--o-
/| /| /| /|
.|/ |/ |/ |/
-o--o--o--o-
/| /| /| /|
.|/ |/ |/ |/
-o--o--o--o-
/| /| /| /|
.|/ |/ |/ |/
-o--o--o--o-
/| /| /| /|
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 342-349.
- J. Katzenelson and R. P. Kurshan, S/R: A Language for Specifying Protocols and Other Coordinating Processes, pp. 286-292 in Proc. IEEE Conf. Comput. Comm., 1986.
A067961
Number of binary arrangements without adjacent 1's on n X n torus connected n-s.
Original entry on oeis.org
1, 9, 64, 2401, 161051, 34012224, 17249876309, 23811286661761, 84590643846578176, 792594609605189126649, 19381341794579313317802199, 1242425797286480951825250390016, 208396491430277954192889648311785961, 91534759488004239323168528670973468727049
Offset: 1
Neighbors for n=4:
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, e-w n-s
A027683, e-w ne-sw n-s
A066866.
A067965
Number of binary arrangements without adjacent 1's on n X n array connected ne-sw and nw-se.
Original entry on oeis.org
2, 9, 119, 2704, 177073, 21836929, 6985036032, 4576976735769, 7263963336910751, 24830487842030082304, 198126078679714777857441, 3494153303407491549112098721, 141264727800378056245286463971328, 12779122891585386852029424628087941481, 2628141044813862018744988536642011269669959
Offset: 1
Neighbors for n=4 (dots represent spaces):
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
Cf. circle
A000204, line
A000045, arrays: e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
A067960
Number of binary arrangements without adjacent 1's on n X n torus connected ne-sw nw-se.
Original entry on oeis.org
1, 9, 34, 961, 25531, 2722500, 464483559, 224546142769, 215560806324388, 509113406167679889, 2590618817013278596997, 30737628149641669227004804, 809724336154415150287031740151, 48754690373355654118816600200711441
Offset: 1
Neighbors for n=4 (dots represent spaces):
. \ /\ /\ /\ /
. o..o..o..o
. / \/ \/ \/ \
. \ /\ /\ /\ /
. o..o..o..o
. / \/ \/ \/ \
. \ /\ /\ /\ /
. o..o..o..o
. / \/ \/ \/ \
. \ /\ /\ /\ /
. o..o..o..o
. / \/ \/ \/ \
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
A067962
a(n) = F(n+2)*(Product_{i=1..n+1} F(i))^2 where F(i)=A000045(i) is the i-th Fibonacci number.
Original entry on oeis.org
1, 2, 12, 180, 7200, 748800, 204422400, 145957593600, 272940700032000, 1336044726656640000, 17122749216831498240000, 574502481723130428948480000, 50464872497041500009263431680000, 11605406728144633757130311383449600000
Offset: 0
Neighbors for n=4 (dots represent spaces, circles represent grid points):
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
- Reinhard Zumkeller, Table of n, a(n) for n = 0..68
- Sergey Kitaev and Toufik Mansour, The problem of the pawns, arXiv:math/0305253 [math.CO], 2003; Annals of Combinatorics 8 (2004) 81-91.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 69, 421.
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
-
a067962 n = a067962_list !! n
a067962_list = 1 : zipWith (*) a067962_list (drop 2 a001654_list)
-- Reinhard Zumkeller, Sep 24 2015
-
a:= proc(n) option remember; `if`(n=0, 1, (F->
F(n+1)*F(n+2)*a(n-1))(combinat[fibonacci]))
end:
seq(a(n), n=0..14); # Alois P. Heinz, May 20 2019
-
Rest[Table[With[{c=Fibonacci[Range[n]]},(Times@@Most[c])^2 Last[c]],{n,15}]] (* Harvey P. Dale, Dec 17 2013 *)
-
a(n)=fibonacci(n+2)*prod(i=0,n,fibonacci(i+1))^2
A067958
Number of binary arrangements without adjacent 1's on n X n torus connected e-w ne-sw n-s nw-se.
Original entry on oeis.org
1, 5, 10, 133, 1411, 42938, 1796859, 157763829, 22909432780, 6291183426165, 3032485231813445, 2674030233698391466, 4216437656471537450175, 12038380931111061789962901, 61810608197507432888286102310, 572863067272579464080483552434421
Offset: 1
Neighbors for n=4:
:\|/\|/\|/\|/
:-o--o--o--o-
:/|\/|\/|\/|\
:\|/\|/\|/\|/
:-o--o--o--o-
:/|\/|\/|\/|\
:\|/\|/\|/\|/
:-o--o--o--o-
:/|\/|\/|\/|\
:\|/\|/\|/\|/
:-o--o--o--o-
:/|\/|\/|\/|\
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
A067963
Number of binary arrangements without adjacent 1's on n X n array connected e-w ne-sw nw-se.
Original entry on oeis.org
2, 7, 77, 1152, 56549, 3837761, 806190208, 251170142257, 223733272186825, 319544298135448960, 1210302996752248488817, 7876274672755293629849313, 127662922218147601317696761088, 3758866349549535184419575245899295
Offset: 1
Neighbors for n=4 (dots represent spaces):
. o--o--o--o
...\/ \/ \/
.../\ /\ /\
. o--o--o--o
...\/ \/ \/
.../\ /\ /\
. o--o--o--o
...\/ \/ \/
.../\ /\ /\
. o--o--o--o
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
Showing 1-10 of 20 results.
Comments