cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086023 a(n) = Sum_{i=1..n} C(i+3,4)^2.

Original entry on oeis.org

1, 26, 251, 1476, 6376, 22252, 66352, 175252, 420277, 931502, 1933503, 3796728, 7109128, 12773528, 22137128, 37160504, 60634529, 96454754, 149963979, 228375004, 341286880, 501309380, 724811880, 1032814380, 1452040005, 2016150006, 2767184031, 3757230256
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n*(n+1)*(n+2)*(n+3)*(n+4)*(35*n^4 +280*n^3 +685*n^2 +500*n +12 )/181440: n in [1..30]]; // G. C. Greubel, Nov 22 2017
  • Mathematica
    Table[n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(35*n^4 + 280*n^3 + 685*n^2 + 500*n + 12)/181440, {n, 1, 50}] (* G. C. Greubel, Nov 22 2017 *)
    Accumulate[Binomial[Range[30]+3,4]^2] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,26,251,1476,6376,22252,66352,175252,420277,931502},30] (* Harvey P. Dale, May 06 2018 *)
  • PARI
    a(n) = sum(i=1, n, binomial(i+3, 4)^2); \\ Michel Marcus, Sep 05 2013
    
  • PARI
    Vec(x*(x^4+16*x^3+36*x^2+16*x+1)/(x-1)^10 + O(x^100)) \\ Colin Barker, May 02 2014
    

Formula

a(n) = ( C(n+4,5)/126 )*( 126 +420*C(n-1,1) +540*C(n-1,2) +315*C(n-1,3) +70*C(n-1,4) ).
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(35*n^4 +280*n^3 +685*n^2 +500*n +12 )/181440. - Bruno Berselli, Sep 05 2013
G.f.: x*(x^4+16*x^3+36*x^2+16*x+1) / (x-1)^10. - Colin Barker, May 02 2014

Extensions

More terms from Michel Marcus, Sep 05 2013