A270563 Integers k such that A086167(k) and A086168(k) are both prime.
1, 15, 45, 105, 135, 231, 807, 1215, 1329, 1395, 1593, 1911, 2301, 2331, 2493, 3045, 3267, 3417, 3495, 3897, 4029, 4059, 4359, 4377, 4635, 4665, 4731, 5265, 6135, 6315, 6429, 6489, 6795, 6915, 6999, 7329, 7515, 7965, 8469, 8979, 9183, 9441, 10755, 11193, 12039
Offset: 1
Keywords
Examples
15 is a term since A086167(15) = 1297 and A086168(15) = 1297 + 15*2 = 1327. 1297 and 1327 are both prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
seq = {}; s1 = s2 = 0; c = n = 0; p = prv = 2; While[c < 45, p = NextPrime[p]; If[p == prv + 2, n++; s1 += prv; s2 += p; If[PrimeQ[s1] && PrimeQ[s2], c++; AppendTo[seq, n]]]; prv = p]; seq (* Amiram Eldar, Jan 03 2020 *)
-
PARI
t(n, p=3) = {while( p+2 < (p=nextprime( p+1 )) || n-->0, ); p-2} s1(n) = sum(k=1, n, t(k)); s2(n) = sum(k=1, n, t(k)+2); for(n=1, 1e3, if(ispseudoprime(s1(n)) && ispseudoprime(s2(n)), print1(n, ", ")));
Extensions
More terms from Amiram Eldar, Jan 03 2020
Comments