cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A100565 a(n) = Card{(x,y,z) : x <= y <= z, x|n, y|n, z|n, gcd(x,y)=1, gcd(x,z)=1, gcd(y,z)=1}.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 4, 3, 5, 2, 8, 2, 5, 5, 5, 2, 8, 2, 8, 5, 5, 2, 11, 3, 5, 4, 8, 2, 15, 2, 6, 5, 5, 5, 13, 2, 5, 5, 11, 2, 15, 2, 8, 8, 5, 2, 14, 3, 8, 5, 8, 2, 11, 5, 11, 5, 5, 2, 25, 2, 5, 8, 7, 5, 15, 2, 8, 5, 15, 2, 18, 2, 5, 8, 8, 5, 15, 2, 14, 5, 5, 2, 25, 5, 5, 5, 11, 2, 25, 5, 8, 5, 5, 5, 17
Offset: 1

Views

Author

Vladeta Jovovic, Nov 28 2004

Keywords

Comments

First differs from A018892 at a(30) = 15, A018892(30) = 14.
First differs from A343654 at a(210) = 51, A343654(210) = 52.
Also a(n) = Card{(x,y,z) : x <= y <= z and lcm(x,y)=n, lcm(x,z)=n, lcm(y,z)=n}.
In words, a(n) is the number of pairwise coprime unordered triples of divisors of n. - Gus Wiseman, May 01 2021

Examples

			From _Gus Wiseman_, May 01 2021: (Start)
The a(n) triples for n = 1, 2, 4, 6, 8, 12, 24:
  (1,1,1)  (1,1,1)  (1,1,1)  (1,1,1)  (1,1,1)  (1,1,1)   (1,1,1)
           (1,1,2)  (1,1,2)  (1,1,2)  (1,1,2)  (1,1,2)   (1,1,2)
                    (1,1,4)  (1,1,3)  (1,1,4)  (1,1,3)   (1,1,3)
                             (1,1,6)  (1,1,8)  (1,1,4)   (1,1,4)
                             (1,2,3)           (1,1,6)   (1,1,6)
                                               (1,2,3)   (1,1,8)
                                               (1,3,4)   (1,2,3)
                                               (1,1,12)  (1,3,4)
                                                         (1,3,8)
                                                         (1,1,12)
                                                         (1,1,24)
(End)
		

Crossrefs

Positions of 2's through 5's are A000040, A001248, A030078, A068993.
The version for subsets of {1..n} instead of divisors is A015617.
The version for pairs of divisors is A018892.
The ordered version is A048785.
The strict case is A066620.
The version for strict partitions is A220377.
A version for sets of divisors of any size is A225520.
The version for partitions is A307719 (no 1's: A337563).
The case of distinct parts coprime is A337600 (ordered: A337602).
A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
A007304 ranks 3-part strict partitions.
A014311 ranks 3-part compositions.
A014612 ranks 3-part partitions.
A051026 counts pairwise indivisible subsets of {1..n}.
A302696 lists Heinz numbers of pairwise coprime partitions.
A337461 counts 3-part pairwise coprime compositions.

Programs

  • Mathematica
    pwcop[y_]:=And@@(GCD@@#==1&/@Subsets[y,{2}]);
    Table[Length[Select[Tuples[Divisors[n],3],LessEqual@@#&&pwcop[#]&]],{n,30}] (* Gus Wiseman, May 01 2021 *)
  • PARI
    A100565(n) = (numdiv(n^3)+3*numdiv(n)+2)/6; \\ Antti Karttunen, May 19 2017

Formula

a(n) = (tau(n^3) + 3*tau(n) + 2)/6.

A070919 a(n) = Card{ (x,y,z) | lcm(x,y,z)=n }.

Original entry on oeis.org

1, 7, 7, 19, 7, 49, 7, 37, 19, 49, 7, 133, 7, 49, 49, 61, 7, 133, 7, 133, 49, 49, 7, 259, 19, 49, 37, 133, 7, 343, 7, 91, 49, 49, 49, 361, 7, 49, 49, 259, 7, 343, 7, 133, 133, 49, 7, 427, 19, 133, 49, 133, 7, 259, 49, 259, 49, 49, 7, 931, 7, 49, 133, 127, 49, 343, 7, 133
Offset: 1

Views

Author

Benoit Cloitre, May 20 2002

Keywords

Comments

A048691(n) gives Card{ (x,y) | lcm(x,y)=n }.

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Product[(k + 1)^3 - k^3, {k, FactorInteger[n][[All, 2]]}], {n,2, 68}]] (* Geoffrey Critzer, Jan 10 2015 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,numdiv(d)^3*moebius(n/d)),","))
    
  • PARI
    a(n) = vecprod(apply(x->(x+1)^3-x^3, factor(n)[, 2])); \\ Amiram Eldar, Sep 03 2023

Formula

a(n) = Sum_{d|n} A000005(d)^3*A008683(n/d).
Sum_{k>0} a(k)/k^s = (1/zeta(s))*Sum_{k>0} tau(k)^3/k^s.
Multiplicative with a(p^e) = 1+3*e+3*e^2 for prime p and e >= 0. - Werner Schulte, Nov 30 2018

A086165 a(n) = |{ (x,y,z) | x < y < z and lcm(x,y,z) = n}|.

Original entry on oeis.org

0, 0, 0, 1, 0, 4, 0, 3, 1, 4, 0, 15, 0, 4, 4, 6, 0, 15, 0, 15, 4, 4, 0, 33, 1, 4, 3, 15, 0, 44, 0, 10, 4, 4, 4, 48, 0, 4, 4, 33, 0, 44, 0, 15, 15, 4, 0, 58, 1, 15, 4, 15, 0, 33, 4, 33, 4, 4, 0, 133, 0, 4, 15, 15, 4, 44, 0, 15, 4, 44, 0, 100, 0, 4, 15, 15, 4, 44, 0, 58, 6, 4, 0, 133, 4, 4, 4, 33, 0
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 13 2003

Keywords

Crossrefs

Programs

  • Maple
    for n from 1 to 100 do a[n] := 0:for x from 1 to n do for y from x+1 to n do for z from y+1 to n do if(lcm(x,y,z)=n) then a[n] := a[n]+1:fi:od:od:od:od:seq(a[j],j=1..200); # Sascha Kurz, Sep 22 2003
  • Mathematica
    f1[p_, e_] := (e+1)^3 - e^3; f2[p_, e_] := 2*e + 1; a[1] = 0; a[n_] := (Times @@ f1 @@@ (f = FactorInteger[n]) - 3 * Times @@ f2 @@@f + 2) / 6; Array[a, 100] (* Amiram Eldar, Sep 03 2023 *)
  • PARI
    A048691(n) = numdiv(n^2);
    A070919(n) = sumdiv(n, d, (numdiv(d)^3)*moebius(n/d));
    A086165(n) = ((A070919(n)-3*A048691(n)+2)/6); \\ Antti Karttunen, May 19 2017, after Jovovic's formula
    
  • PARI
    a(n) = {my(e = factor(n)[, 2]); (vecprod(apply(x->(x+1)^3-x^3, e)) - 3*vecprod(apply(x->2*x+1, e)) + 2) / 6;} \\ Amiram Eldar, Sep 03 2023

Formula

a(n) = (A070919(n) - 3*A048691(n) + 2)/6. - Vladeta Jovovic, Dec 01 2004
a(n) = A086222(n) - A048691(n). - Ridouane Oudra, Aug 14 2025

Extensions

More terms from Sascha Kurz, Sep 22 2003

A377304 a(n) is the number of distinct cuboids whose edges are divisors of n.

Original entry on oeis.org

1, 4, 4, 10, 4, 20, 4, 20, 10, 20, 4, 56, 4, 20, 20, 35, 4, 56, 4, 56, 20, 20, 4, 120, 10, 20, 20, 56, 4, 120, 4, 56, 20, 20, 20, 165, 4, 20, 20, 120, 4, 120, 4, 56, 56, 20, 4, 220, 10, 56, 20, 56, 4, 120, 20, 120, 20, 20, 4, 364, 4, 20, 56, 84, 20, 120, 4, 56
Offset: 1

Views

Author

Felix Huber, Oct 25 2024

Keywords

Comments

Equivalently, a(n) is the number of unordered triples of divisors of n.
There are tau(n)*(tau(n) - 1)*(tau(n) - 2)/6 distinct cuboids with three different edges, (tau(n)*1*(tau(n) - 1) + tau(n)*(tau(n) - 1)*2)/3 distinct cuboids with two different edges and tau(n) distinct cuboids that are cubes.

Examples

			a(4) = 10, because there are 10 distinct cuboids whose edges are divisors of 4: (1, 1, 1), (1, 1, 2), (1, 1, 4), (1, 2, 2), (1, 2, 4), (1, 4, 4), (2, 2, 2), (2, 2, 4), (2, 4, 4), (4, 4, 4).
		

Crossrefs

Programs

  • Maple
    A377304:=proc(n)
       local d;
       d:=NumberTheory:-tau(n);
       return (d^3+3*d^2+2*d)/6
    end proc;
    seq(A377304(n),n=1..68);
  • Mathematica
    a[n_] := Binomial[DivisorSigma[0, n] + 2, 3]; Array[a, 70] (* Amiram Eldar, Nov 07 2024 *)

Formula

a(n) = (tau(n)^3 + 3*tau(n)^2 + 2*tau(n))/6.
a(n) = binomial(tau(n) + 2, 3).
Showing 1-4 of 4 results.