cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A086273 Rectangular array T(n,k) of central polygonal numbers, by antidiagonals.

Original entry on oeis.org

1, 1, 3, 1, 4, 7, 1, 5, 10, 13, 1, 6, 13, 19, 21, 1, 7, 16, 25, 31, 31, 1, 8, 19, 31, 41, 46, 43, 1, 9, 22, 37, 51, 61, 64, 57, 1, 10, 25, 43, 61, 76, 85, 85, 73, 1, 11, 28, 49, 71, 91, 106, 113, 109, 91, 1, 12, 31, 55, 81, 106, 127, 141, 145, 136, 111, 1, 13, 34, 61, 91, 121, 148
Offset: 1

Views

Author

Clark Kimberling, Jul 14 2003

Keywords

Comments

Transpose of the array at A086272.

Examples

			Northwest corner:
  1    1    1    1    1    1    1    1    1    1
  3    4    5    6    7    8    9   10   11   12 A000027
  7   10   13   16   19   22   25   28   31   34 A112414, A016777
  13   19   25   31   37   43   49   55   61   67 A016921
  21   31   41   51   61   71   81   91  101  111 A017281
  31   46   61   76   91  106  121  136  151  166
  43   64   85  106  127  148  169  190  211  232
  57   85  113  141  169  197  225  253  281  309
  73  109  145  181  217  253  289  325  361  397
  91  136  181  226  271  316  361  406  451  496
111  166  221  276  331  386  441  496  551  606
133  199  265  331  397  463  529  595  661  727
157  235  313  391  469  547  625  703  781  859
183  274  365  456  547  638  729  820  911 1002
211  316  421  526  631  736  841  946 1051 1156
241  361  481  601  721  841  961 1081 1201 1321
		

Crossrefs

Programs

Formula

T(n, k)=(k+1)*binomial(n, 2)+1.

A244500 Number T(n, k) of ways to place k points on an n X n X n triangular grid so that no pair of them has distance sqrt(3). Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 1, 6, 12, 8, 1, 10, 36, 55, 33, 9, 1, 15, 87, 248, 378, 339, 187, 63, 12, 1, 1, 21, 180, 820, 2190, 3606, 3716, 2340, 825, 125, 1, 28, 333, 2212, 9110, 24474, 43928, 53018, 42774, 22792, 7945, 1764, 196, 1, 36, 567, 5163, 30300, 121077, 339621
Offset: 1

Views

Author

Heinrich Ludwig, Jun 29 2014

Keywords

Comments

In the following triangular grid points x have Euclidean distance sqrt(3) from point o. It is the second closest distance possible among grid points.
x
. .
. o .
x . . x
Triangle T(n, k) is irregular: 0 <= k <= max(n), where max(n), the maximal number of points that can be placed on the grid, is:
for n = 3j-2: max(n) = A000326(j) = j(3j-1)/2;
for n = 3j-1 or n = 3j: max(n) = A045943(j) = 3j(j+1)/2; j = 1,2,3,...
Empirical: (1) The number of ways to place the maximal number of points for grid sizes n = 3j are cubes of Catalan numbers, i.e., for n = 3j: T(n, max(n)) = C(j+1)^3 = A033536(j+1). (2) For n = 3j-2: T(n, max(n)) = A244506(n) = A244507^2(n). (3) For n = 3j-1: T(n, max(n)) = A000012(n) = 1 and T(n, max(n)-1) = 3j^2.
Row n is also the coefficients of the independence polynomial of the n-triangular honeycomb acute knight graph. - Eric W. Weisstein, May 21 2017

Examples

			On an 8 X 8 X 8 grid there is T(8, 18) = 1 way to place 18 points (x) so that no pair of points has the distance square root of 3.
         x
        x x
       . . .
      x . . x
     x x . x x
    . . . . . .
   x . . x . . x
  x x . x x . x x
Continuation of this pattern will give the unique maximal solution for all n = 3j-1.
Triangle T(n, k) begins:
  1,  1;
  1,  3,   3,   1;
  1,  6,  12,   8;
  1, 10,  36,  55,   33,    9;
  1, 15,  87, 248,  378,  339,  187,   63,  12,   1;
  1, 21, 180, 820, 2190, 3606, 3716, 2340, 825, 125;
First row refers to n = 1.
		

Crossrefs

Cf. A000217 (column 2), A086274 (1/3 * column 3), A244501 (column 4), A244502 (column 5), A244503 (column 6).
Cf. A287195 (length of row n). - Eric W. Weisstein, May 21 2017
Cf. A287204 (row sums). - Eric W. Weisstein, May 21 2017

A244501 Number of ways to place 3 points on an n X n X n triangular grid so that no pair of them has distance sqrt(3).

Original entry on oeis.org

1, 8, 55, 248, 820, 2212, 5163, 10815, 20833, 37540, 64067, 104518, 164150, 249568, 368935, 532197, 751323, 1040560, 1416703, 1899380, 2511352, 3278828, 4231795, 5404363, 6835125, 8567532, 10650283, 13137730, 16090298, 19574920, 23665487, 28443313, 33997615
Offset: 2

Views

Author

Heinrich Ludwig, Jun 29 2014

Keywords

Comments

sqrt(3) is the second closest (Euclidean) distance for a pair of points in a triangular grid. For illustration see A244500.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(6*x^7-17*x^6+14*x^5-6*x^4-4*x^3+20*x^2+x+1) / (x-1)^7, {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 03 2014 after Colin Barker *)
  • PARI
    Vec(-x^2*(6*x^7-17*x^6+14*x^5-6*x^4-4*x^3+20*x^2+x+1)/(x-1)^7 + O(x^100)) \\ Colin Barker, Jun 29 2014

Formula

a(n) = 1/48*n^6 + 1/16*n^5 - 13/16*n^4 + 61/48*n^3 + 247/24*n^2 - 293/6*n + 6 for n >= 3.
G.f.: -x^2*(6*x^7 - 17*x^6 + 14*x^5 - 6*x^4 - 4*x^3 + 20*x^2 + x + 1) / (x-1)^7. - Colin Barker, Jun 29 2014

A244502 Number of ways to place 4 points on an n X n X n triangular grid so that no pair of them has distance sqrt(3).

Original entry on oeis.org

33, 378, 2190, 9110, 30300, 85563, 213293, 482085, 1006950, 1971185, 3655053, 6472533, 11017505, 18120840, 28919970, 44942618, 68206473, 101336700, 147703280, 211580280, 298329258, 414609113, 568614795, 770347395, 1031918240, 1367889723, 1795655703, 2335864415
Offset: 4

Views

Author

Heinrich Ludwig, Jun 29 2014

Keywords

Comments

sqrt(3) is the second closest (Euclidean) distance for a pair of points in a triangular grid. For illustration see A244500.

Crossrefs

Programs

  • Maple
    A244502:=n->`if`(n=4,33,1/384*n^8 + 1/96*n^7 - 13/64*n^6 + 5/48*n^5 + 875/128*n^4 - 2543/96*n^3 - 4141/96*n^2 + 3759/8*n - 837); seq(A244502(n), n=4..30); # Wesley Ivan Hurt, Jun 30 2014
  • Mathematica
    CoefficientList[Series[(10*x^9 - 30*x^8 + 130*x^6 - 333*x^5 + 444*x^4 - 236*x^3 + 24*x^2 - 81*x - 33)/(x - 1)^9, {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 30 2014 *)
  • PARI
    Vec(x^4*(10*x^9-30*x^8+130*x^6-333*x^5+444*x^4-236*x^3+24*x^2-81*x-33)/(x-1)^9 + O(x^100)) \\ Colin Barker, Jun 29 2014

Formula

a(n) = 1/384*n^8 + 1/96*n^7 - 13/64*n^6 + 5/48*n^5 + 875/128*n^4 - 2543/96*n^3 - 4141/96*n^2 + 3759/8*n - 837, for n >= 5.
G.f.: x^4*(10*x^9 - 30*x^8 + 130*x^6 - 333*x^5 + 444*x^4 - 236*x^3 + 24*x^2 - 81*x - 33) / (x - 1)^9. - Colin Barker, Jun 29 2014

A244503 Number of ways to place 5 points on an n X n X n triangular grid so that no pair of them has distance sqrt(3).

Original entry on oeis.org

9, 339, 3606, 24474, 121077, 475353, 1568712, 4524540, 11722134, 27828138, 61442460, 127616970, 251577939, 474068124, 858822579, 1502804622, 2549955858, 4209357693, 6778862319, 10675429650, 16473604089, 24953782251, 37162160802, 54484513344, 78736227726
Offset: 4

Views

Author

Heinrich Ludwig, Jun 29 2014

Keywords

Comments

sqrt(3) is the second closest (Euclidean) distance for a pair of points in a triangular grid. For illustration see A244500.
All elements of the sequence are multiples of 3.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-3*(5*x^13 -15*x^12 -26*x^11 +228*x^10 -584*x^9 +706*x^8 -162*x^7 -542*x^6 +766*x^5 -924*x^4 +656*x^3 +124*x^2 +80*x +3) / (x-1)^11, {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 03 2014 after Colin Barker *)

Formula

a(n) = 1/3840*n^10 + 1/768*n^9 - 13/384*n^8 - 7/384*n^7 + 1589/768*n^6 - 24619/3840*n^5 - 1561/32*n^4 + 20965/64*n^3 - 11101/240*n^2 - 85143/20*n + 9711 for n >= 7.
G.f.: -3*x^4*(5*x^13 - 15*x^12 - 26*x^11 + 228*x^10 - 584*x^9 + 706*x^8 - 162*x^7 - 542*x^6 + 766*x^5 - 924*x^4 + 656*x^3 + 124*x^2 + 80*x + 3) / (x - 1)^11. - Colin Barker, Jun 29 2014

A210872 Triangle of coefficients of polynomials u(n,x) jointly generated with A210873; see the Formula section.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 1, 5, 1, 0, 1, 4, 9, 1, 0, 1, 3, 12, 14, 1, 0, 1, 3, 9, 29, 20, 1, 0, 1, 3, 8, 27, 60, 27, 1, 0, 1, 3, 8, 22, 74, 111, 35, 1, 0, 1, 3, 8, 21, 63, 181, 189, 44, 1, 0, 1, 3, 8, 21, 56, 178, 399, 302, 54, 1, 0, 1, 3, 8, 21, 55, 154, 474, 806, 459, 65, 1, 0, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 29 2012

Keywords

Comments

Column 1: 1,0,0,0,0,0,0,0,0,...
Row sums: A000225 (-1+2^n)
Alternating row sums: (-1)*A077973
Limiting row: 0,1,3,8,21,..., even-indexed Fibonacci numbers
If the term in row n and column k is written as U(n,k), then U(n,n-1)=A000096 and U(n,n-2)=A086274.
For a discussion and guide to related arrays, see A208510.

Examples

			First six rows:
1
0...1
0...2...1
0...1...5...1
0...1...4...9....1
0...1...3...12...14...1
First three polynomials u(n,x): 1, x, 2x + x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 14;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] - 1;
    v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210872 *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210873 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]   (* A000225 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]   (* A083318 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}]  (* -A077973 *)
    Table[v[n, x] /. x -> -1, {n, 1, z}]  (* A137470 *)

Formula

u(n,x)=x*u(n-1,x)+v(n-1,x)-1,
v(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Also, u(n,x)=2x*u(n-1,x)+(x-x^2)*u(n-2,x)+x, where u(2,x)=x.

A210876 Triangle of coefficients of polynomials u(n,x) jointly generated with A210877; see the Formula section.

Original entry on oeis.org

1, 2, 1, 1, 5, 1, 1, 4, 9, 1, 1, 3, 12, 14, 1, 1, 3, 9, 29, 20, 1, 1, 3, 8, 27, 60, 27, 1, 1, 3, 8, 22, 74, 111, 35, 1, 1, 3, 8, 21, 63, 181, 189, 44, 1, 1, 3, 8, 21, 56, 178, 399, 302, 54, 1, 1, 3, 8, 21, 55, 154, 474, 806, 459, 65, 1, 1, 3, 8, 21, 55, 145, 430, 1169
Offset: 1

Views

Author

Clark Kimberling, Mar 30 2012

Keywords

Comments

For n>2, each row begins with 1 and ends with 1. If the term in row n and column k is denoted by U(n,k), then U(n,n-2)=A000096(n-1) and U(n,n-3)=A086274(n-1).
Row sums: A000225 (-1+2^n)
Alternating row sums: A077973
Limiting row: 1,3,8,21,55,..., even-indexed Fibonacci numbers
For a discussion and guide to related arrays, see A208510.

Examples

			First six rows:
1
2...1
1...5...1
1...4...9....1
1...3...12...14...1
1...3...9....29...20...1
First three polynomials u(n,x): 1, 2 + x, 1 + 5x + x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 14;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
    v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + x;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210876 *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210877 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]  (* A000225 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]  (* A000225 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}] (* A077973 *)
    Table[v[n, x] /. x -> -1, {n, 1, z}] (* A137470 *)

Formula

u(n,x)=x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=x*u(n-1,x)+x*v(n-1,x)+x,
where u(1,x)=1, v(1,x)=1.
Showing 1-7 of 7 results.