cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086325 Let u(1)=0, u(2)=1, u(k)=u(k-1)+u(k-2)/(k-2); then a(n)=n!*u(n).

Original entry on oeis.org

0, 2, 6, 36, 220, 1590, 12978, 118664, 1201464, 13349610, 161530270, 2114578092, 29780308116, 448995414686, 7215997736010, 123153028027920, 2224451568754288, 42395429898611154, 850263899633257014, 17900292623858042420, 394701452356069835340, 9096928711444657157382, 218739785834282892557026
Offset: 1

Views

Author

N. J. A. Sloane. This sequence appeared in the 1973 "Handbook", but was then omitted from the database. Resubmitted by Benoit Cloitre, Aug 30 2003. Entry revised by N. J. A. Sloane, Jun 11 2012

Keywords

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263, Table 7.5.1, row 3.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210, Table 3, Three-line Latin rectangles.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Programs

  • Maple
    a:=n->n!*add((-1)^k/k!, k=0..n): seq(a(n)*n, n=1..19); # Zerinvary Lajos, Dec 18 2007
    with (combstruct):with (combinat):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, labeled]; end: ZLL:=a(2):seq(count(ZLL, size=n)*fibonacci(2,n), n=1..19); # Zerinvary Lajos, Jun 11 2008
    with (combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, labeled]; end: ZLL:=a(2):seq(count(ZLL, size=n)*n, n=1..19); # Zerinvary Lajos, Jun 11 2008
  • Mathematica
    Table[Subfactorial[n]*n, {n, 1, 19}] (* Zerinvary Lajos, Jul 09 2009 *)
  • PARI
    a(n) = n*((n! + 1)\exp(1)); \\ Indranil Ghosh, Apr 13 2017

Formula

a(n) = ceiling(n*n!/e) - (1-(-1)^n)/2.
E.g.f.: x^2*exp(-x)/(1-x)^2. - Vladeta Jovovic, Nov 20 2003
a(n) = n*floor((n!+1)/e). [Gary Detlefs, Jul 13 2010]
a(n) = n * A000166(n). [Joerg Arndt, Jul 09 2012]
G.f.: x*f'(x), where f(x) = 1/(1 + x) + Sum_{k>=1} k^k*x^k/(1 + (k + 1)*x)^(k+1). - Ilya Gutkovskiy, Apr 13 2017