cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A086447 a(n) = the least k such that prime(n+1)+prime(n+2)+...+prime(n+k) is a multiple of prime(n).

Original entry on oeis.org

2, 2, 6, 6, 6, 6, 4, 8, 4, 30, 7, 31, 37, 67, 22, 60, 46, 38, 69, 13, 65, 76, 19, 163, 9, 52, 100, 84, 66, 136, 66, 119, 33, 79, 47, 76, 187, 214, 37, 96, 461, 111, 62, 189, 510, 37, 256, 121, 130, 132, 144, 481, 64, 195, 53, 47, 136, 90, 194, 318, 526, 151, 788, 1542
Offset: 1

Views

Author

Zak Seidov, Jul 20 2003

Keywords

Comments

Conjecture: a(n) exists for every n.

Examples

			a(3)=6 because prime(3)=5 divides 7+11+13+17+19+23 = 90.
		

Crossrefs

Programs

  • Mathematica
    bb={}; Do[s0=Prime[n0]; s=0; Do[s+=Prime[n]; If[IntegerQ[s/s0], bb=Append[bb, n-n0]; Break[]], {n, n0+1, 8000}], {n0, 1, 100}]; bb
    sncp[n_]:=Module[{p=Prime[n],k=n+1,t},t=Prime[k];While[!Divisible[ t, p], k++;t=t+Prime[k]];k-n]; Array[sncp,100]  (* Harvey P. Dale, May 21 2017 *)
  • PARI
    a(n)=my(p = prime(n), sp = nextprime(p+1), lp = sp, nb = 1); while (sp % p, lp = nextprime(lp+1); nb++; sp += lp); nb; \\ Michel Marcus, May 21 2017
    
  • PARI
    a(n, p=prime(n))=my(s, k); forprime(q=p+1, , s+=q; k++; if(s%p==0, return(k))) \\ Charles R Greathouse IV, May 21 2017

Extensions

Edited by Don Reble, Nov 10 2005

A200721 Product of two nonconsecutive primes p and q that divides the sum of primes between p and q, exclusively.

Original entry on oeis.org

26, 1133, 20309, 51159, 3246905, 28673661, 5201685791
Offset: 1

Views

Author

Manuel Valdivia, Nov 21 2011

Keywords

Comments

Prime p is approximately q/((2*log(q)-1)*k), for k = 1, 1, 3, 307, 5041, 102378,..(quotients).
a(8) > 2*10^10. 3235398421447 is also a term. - Donovan Johnson, Nov 23 2011

Examples

			51159 = 3*17053, (5+ ... +17047)/51159 = 307.
		

Crossrefs

Programs

  • Mathematica
    ss[n_] := Module[{f = Transpose[FactorInteger[n]], p, q, s}, If[f[[2]] == {1, 1}, {p, q} = PrimePi[f[[1]]]; s = Total[Table[Prime[i], {i, p + 1, q - 1}]]; s != 0 && Mod[s, n] == 0, False]]; Select[Range[2, 21000], ss] (* T. D. Noe, Nov 21 2011 *)

Extensions

a(7) from Donovan Johnson, Nov 23 2011
Showing 1-2 of 2 results.