A086447 a(n) = the least k such that prime(n+1)+prime(n+2)+...+prime(n+k) is a multiple of prime(n).
2, 2, 6, 6, 6, 6, 4, 8, 4, 30, 7, 31, 37, 67, 22, 60, 46, 38, 69, 13, 65, 76, 19, 163, 9, 52, 100, 84, 66, 136, 66, 119, 33, 79, 47, 76, 187, 214, 37, 96, 461, 111, 62, 189, 510, 37, 256, 121, 130, 132, 144, 481, 64, 195, 53, 47, 136, 90, 194, 318, 526, 151, 788, 1542
Offset: 1
Examples
a(3)=6 because prime(3)=5 divides 7+11+13+17+19+23 = 90.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
bb={}; Do[s0=Prime[n0]; s=0; Do[s+=Prime[n]; If[IntegerQ[s/s0], bb=Append[bb, n-n0]; Break[]], {n, n0+1, 8000}], {n0, 1, 100}]; bb sncp[n_]:=Module[{p=Prime[n],k=n+1,t},t=Prime[k];While[!Divisible[ t, p], k++;t=t+Prime[k]];k-n]; Array[sncp,100] (* Harvey P. Dale, May 21 2017 *)
-
PARI
a(n)=my(p = prime(n), sp = nextprime(p+1), lp = sp, nb = 1); while (sp % p, lp = nextprime(lp+1); nb++; sp += lp); nb; \\ Michel Marcus, May 21 2017
-
PARI
a(n, p=prime(n))=my(s, k); forprime(q=p+1, , s+=q; k++; if(s%p==0, return(k))) \\ Charles R Greathouse IV, May 21 2017
Extensions
Edited by Don Reble, Nov 10 2005
Comments