cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A211019 Triangle read by rows: T(n,k) = number of squares and rectangles of area 2^(k-1) after 2^n stages in the toothpick structure of A139250, divided by 4, n>=1, k>=1, assuming the toothpicks have length 2.

Original entry on oeis.org

0, 0, 1, 2, 3, 1, 10, 13, 3, 1, 42, 53, 13, 3, 1, 170, 213, 53, 13, 3, 1, 682, 853, 213, 53, 13, 3, 1, 2730, 3413, 853, 213, 53, 13, 3, 1, 10922, 13653, 3413, 853, 213, 53, 13, 3, 1, 43690, 54613, 13653, 3413, 853, 213, 53, 13, 3, 1, 174762, 218453
Offset: 1

Views

Author

Omar E. Pol, Sep 24 2012

Keywords

Comments

All internal regions in the toothpick structure are squares and rectangles.

Examples

			Triangle begins:
0;
0,         1;
2,         3,     1;
10,       13,     3,    1;
42,       53,    13,    3,   1;
170,     213,    53,   13,   3,   1;
682,     853,   213,   53,  13,   3,  1;
2730,   3413,   853,  213,  53,  13,  3,  1;
10922, 13653,  3413,  853, 213,  53, 13,  3, 1;
43690, 54613, 13653, 3413, 853, 213, 53, 13, 3, 1;
		

Crossrefs

Row sums give 0 together with A014825.

Formula

T(n,k) = A211016(n,k)/4.
T(n,1) = A020988(n-2), n>=2.

A321421 a(n) = 10*(4^n - 1)/3 + 1.

Original entry on oeis.org

1, 11, 51, 211, 851, 3411, 13651, 54611, 218451, 873811, 3495251, 13981011, 55924051, 223696211, 894784851, 3579139411, 14316557651, 57266230611, 229064922451, 916259689811, 3665038759251, 14660155037011, 58640620148051, 234562480592211, 938249922368851
Offset: 0

Views

Author

Paul Curtz, Nov 09 2018

Keywords

Crossrefs

Programs

  • GAP
    List([0..25],n->10*(4^n-1)/3+1); # Muniru A Asiru, Nov 10 2018
  • Maple
    seq(coeff(series((1+6*x)/((1-x)*(1-4*x)),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Nov 10 2018
  • Mathematica
    a[n_]:=10*(4^n - 1)/3 + 1 ; Array[a, 20, 0] (* or *)
    CoefficientList[Series[-((7 E^x)/3) + (10 E^(4 x))/3 , {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Nov 10 2018 *)
    LinearRecurrence[{5,-4},{1,11},30] (* Harvey P. Dale, Aug 22 2020 *)
  • PARI
    Vec((1 + 6*x) / ((1 - x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Nov 10 2018
    

Formula

a(n) = 4*a(n-1) + 7, a(0) = 1 for n > 0.
a(n) = 5*a(n-1) - 4*a(n-2), a(0) = 1, a(1) = 11, n > 1.
a(n) = a(n-1) + 10*4^(n-1), a(0) = 1, n > 0.
a(n) = A086462(n) + 1 for n > 0. - Michel Marcus, Nov 09 2018
G.f.: (1 + 6*x) / ((1 - x)*(1 - 4*x)). - Colin Barker, Nov 10 2018
E.g.f.: (-7*exp(x) + 10*exp(4*x))/3. - Stefano Spezia, Nov 10 2018
a(n) = 10*A002450(n) + 1. - Omar E. Pol, Nov 10 2018

Extensions

More terms from Colin Barker, Nov 10 2018
Showing 1-2 of 2 results.