cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086602 a(n) = A000217(A000217(n))-n^2.

Original entry on oeis.org

0, 0, 2, 12, 39, 95, 195, 357, 602, 954, 1440, 2090, 2937, 4017, 5369, 7035, 9060, 11492, 14382, 17784, 21755, 26355, 31647, 37697, 44574, 52350, 61100, 70902, 81837, 93989, 107445, 122295, 138632, 156552, 176154, 197540, 220815, 246087
Offset: 0

Views

Author

Jon Perry, Jul 23 2003

Keywords

Examples

			a(3) = t(t(3))-3^2 = t(6)-9 = 21-9 = 12.
		

Crossrefs

Programs

  • Magma
    [n*(n-1)*(n^2+3*n-2)/8: n in [0..40]]; // Vincenzo Librandi, Jun 26 2016
  • Maple
    seq(3*binomial(n+2,4)-binomial(n,2), n=0..35); # Zerinvary Lajos, May 02 2007
  • Mathematica
    Table[n (n - 1) (n^2 + 3 n - 2)/8, {n, 0, 40}] (* Bruno Berselli, Aug 27 2014 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,0,2,12,39},60] (* Harvey P. Dale, Apr 04 2023 *)
  • PARI
    t(i)=i*(i+1)/2
    vector(40,i,t(t(i))-i^2)
    

Formula

a(n) = A000330(n-1)+A001295(n-1). - Alford Arnold, Jun 29 2005
a(n) = 3*C(n+2,4) - C(n,2). - Zerinvary Lajos, May 02 2007, corrected Jun 12 2018
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) = n*(n-1)*(n^2+3*n-2)/8. [R. J. Mathar, Oct 30 2009]
G.f.: x^2*(-2-2*x+x^2)/(x-1)^5. [R. J. Mathar, Oct 30 2009]
a(n) = (n-1)*A005581(n) - Sum_{i=0..n-1} A005581(i). [Bruno Berselli, Aug 27 2014]